

Introduction

Challenge

Direct coupling of a DC micro-plasma source to a Fourier Transform – Ion Trap (FT-IT) mass spectrometer

- Pulsed sampling from 10-1000 mbar
- FT-IT requires trap pressures < 10⁻⁶ mbar to achieve:
- Optimum mass resolution
- Strongly reduced ion-molecule reactions during the storage and detection phase since
- such reactions change the initially injected ion population
- analysis of the recorded spectra is rendered much more difficult
- Stable operation of the micro-plasma by continuous delivery of primary discharge gas flow

Realization:

- Direct coupling of a reaction chamber and the FT-IT mass analyzer via a quartz capillary
- Application of a fast switching valve to adjusting the pulse duration depending on the upstream gas pressure
- Three-channel-valve allowing pulsed inlet of the analyte and subsequent swift pumping of the gas load to quickly lower the trap pressure
- Spatial separation of the continuous delivery of the primary discharge gas flow and the pulsed analyte flow

Benchmark Measurements:

- Carried out with toluene in nitrogen; figures of merit are limit of detection and dynamic range
- Observations of the extent of ion-molecule reactions using Kr/Xe mixtures in nitrogen and toluene in hydrogen

Methods

Mass analyzer: Zeiss Fourier Transform Ion Trap (FT-IT)

Ionization Method:

- Custom DC micro-plasma source (initially developed for applications in the low pressure regime)
- Operated with Helium 5.0 (Messer Industriegase GmbH, Bad Soden, Germany)
- Quartz capillary (GC column, uncoated, ID 0.5 mm)

Chemicals:

- Custom gas mixtures: Toluene in nitrogen (10 ppmV and 10 ppbV) Toluene in hydrogen (10 ppmV)
- Xe and Kr in nitrogen (6 ppmV each) Dynamic dilution stage (up to 1:1000)

Data Analysis:

Analysis of the mass spectra were performed with mMass (Version 5.5.0; open source software)

Fig. 1: Schematic Setup

This leads to an elevated pressure within the trap upon sampling (10⁻³ to 10⁻² mbar), which has a favorable ion "cooling" effect. As the pump rate through the quartz capillary is rather low and the trap requires a local pressure of at least 10⁻⁶ mbar for measurement, a swift reduction of the gas load by reverse-pumping of the sample is favorable.

Chemistry @ work: Reagent lons and Analyte lons

Initial He^M – formation:

The operation of the **DC micro-plasma** in helium leads to the generation of helium meta-stables (He^{M} ; 19.8 eV):

Formation of reagent ions:

In N_2 as main background gas N_2^+ and N_4^+ are generated due to Penning ionization induced by He^M

$$He^{M} + N_{2} \rightarrow N_{2}$$

 $N_2^+ + N_2 + M \rightleftharpoons N_4^+ + M$

In presence of elevated water mixing ratios protonated water clusters rapidly form

$$N_4^+ + H_2^- \rightarrow H_2^-$$

$$H_2O^+ + H_2O \rightarrow H_3$$

$$H_3O^+ + H_2O + N_2 \rightleftharpoons [H]$$

$$[H+(H_2O)_{n-1}]^+ + H_2O \rightleftharpoons [H]$$

Depending on the water mixing ratio and temperature n = 3 ... 6

With toluene as analyte

Under "dry" conditions only charge transfer from N_2^+ and N_4^+ towards toluene (T) is observed:

$$N_2^+ + T \rightarrow T^-$$

$$N_4^+ + T \rightarrow T^-$$

At elevated water mixing ratios charge transfer *and* protonation by proton bound water clusters is observed

$$N_{2}^{+} + T \rightarrow T^{-}$$

$$N_{4}^{+} + T \rightarrow T^{-}$$

$$[H+(H_{2}O)_{n}]^{+} + T \rightarrow [T]$$

Why do we measure m/z 91?

Collisional ion activation within the trap under H₂-loss leads to formation of $C_7 H_7^+$ (m/z 91) ions.

Micro-plasma based pulsed direct charge transfer stage coupled to a FT-IT mass spectrometer

Experimental Setup

Heart of the setup: "T-piece" arrangement

Why?

- DC micro-plasma generated Hemetastables (He^M) are quantitatively reacting to form reagent ions in very close vicinity to the aperture, minimizing any He^M losses
- High pressure conditions while ionizing the analyte, thus the analyte molecule density is still elevated (as compared to e.g. gas expansions)
- Small and defined reaction area including a reaction volume inside the quartz capillary
- Direct transfer of analyte ions into the trap via the quartz capillary (GC column, ID 0.5 mm)

Summary: Which reagent ions do we generate?

Under "dry" conditions: N_2^+ and N_4^+

,⁺ + He + e⁻

 $,0^{+} + 2 N_{2}$ ₃O⁺ + OH

 $[+(H_2O)_2]^+ + N_2$ 1+(H₂O)_n]⁺

At elevated water mixing ratios: N_2^+ , N_4^+ and $[H+(H_2O)_n]^+$

Formation of analyte ions:

Charge transfer reactions of N_2^+ and N_4^+

$$N_2^+ + A \rightarrow A^+ + N_2$$

 $N_2^+ + A \rightarrow A^+ + 2 N_2$

$$N_4^+ + A \rightarrow A^+ + 2 N_2$$

After activation of the protonated water clusters ($n \rightarrow 0, 1$) in the ion trap, protonation of the analyte molecules is observed

$[H+(H_2O)_n]^+ + A \rightarrow [A+H]^+ + n H_2O$

(strongly simplified reaction scheme)

•			•
Analyte	IP [eV]	Analyte	IP [eV]
Nitrogen	15,6	Xenon	12,1
Water	12,6	Krypton	14,0
Oxygen	12,1	Toluene	8,8

 Table 1: Ionization potentials of selected analytes

 $+ (m/z 92) + N_2$

 $^{+}$ (m/z 92) + 2 N₂

 $^{+}$ (m/z 92) + N₂

 $^{+}$ (m/z 92) + 2 N₂

 $[T+H]^+$ (m/z 93) + n H₂O

a) purified and b) non-purified conditions

<u>Yessica Brachthaeuser</u>¹; David Mueller¹; Hendrik Kersten¹; Klaus Brockmann¹; Thorsten Benter¹; Michel Aliman²; Gennady Fedosenko²; Ruediger Reuter²; Alexander Laue²; Valerie Derpmann²; Hin Yiu Chung²

Benchmark Measurements

- Benchmark measurements were carried out with toluene diluted in nitrogen at elevated water mixing ratios and sampling the analyte from 100 mbar back pressure.
- In this case formation of M^{+} , $[M+H]^{+}$ and $[M-H]^{+}$ is expected. For toluene these analyte ions refer to m/z 91, m/z 92 and m/z 93, respectively (compare fig. 2b and 3).
- The dynamic range shows a highly linear signal dependence on the mixing ratio over 5 orders of magnitude.
- The signal dependence on the toluene mixing ratio is exemplarily demonstrated for the range 100 pptV to 1 ppbV.

pumping, analysis, FFT) is 30 s

as analyte base signal) is determined to 130 pptV.

mixing ratio between 200 pptV and 1 ppbV

Ion – Molecule Reactions

The extent of ion molecule reactions is investigated by temporally resolved experiments as the ion population remains trapped in the FT – IT. Experiments were carried out with an 1:1 mixture of Xe/Kr in nitrogen as well as toluene in hydrogen

Xe/Kr – experiments

- Charge transfer from N_2^+ to the rare gases initially leads to a uniform ion distribution.
- This initial ion distribution changes as charge transfer from Kr⁺ to Xe occurs.
- Mass spectra of this gas mixture only exhibit Xe⁺ signals even if the reaction time is held as short as possible.
- In case of elevated reaction times and in presence of several ppmV water, quantitative charge transfer occurs from the rare gases to water. In this case neither Kr⁺ nor Xe⁺ is detected at

Fig. 6: Mass spectrum of Xe @ 600 ppbV in good agreement with the isotopic distribution (¹²⁸Xe: 1,91%; ¹²⁹Xe: 26,4 %; ¹³⁰Xe: 4,1 %; ¹³¹Xe: 21,3 %; ¹³²Xe: 26,9 % ; ¹³⁴Xe: 10,4 %; ¹³⁶Xe: 8,9 %)

Toluene – experiments in hydrogen

The primary generated toluene species will be the M⁺, the [M-H]⁺ and in quiet large extent the [M+H]⁺ due to protonation from initially generated H_3^+ - ions.

In subsequent ion – molecule reactions the following reactions will occur:

aMS 1) Physical & Theoretical Chemistry

Wuppertal, Germany **Institute for Pure and Applied Mass Spectrometry**

Fig. 3: Single-shot mass spectrum of 100 pptV toluene in nitrogen; total measurement time (gas pulse delivery, ion trapping,

Using S/N = 6 the limit of detection (evaluated for m/z 91)

- $T^{+}(m/z 92) + T \rightarrow [T+H]^{+}(m/z 93) + T-H^{-}$
- $[T-H]^+(m/z 91) + T \rightarrow C_8 H_9^+(m/z 105) + C_6 H_6$

cycle number

Fig. 7: Temporal evolution of the signal distribution while applying the stimulus pulse of the FT-IT in cycles of 9 sec. [M+H]⁺ is the base signal in H₂ matrix when analyzing swiftly after ionization. At longer reaction times m/z 105 becomes more dominant and the intensity of m/z 93 decreases drastically.

CARL ZEISS SMT

2) Carl Zeiss SMT **Oberkochen**, Germany

Conclusions

General conclusions:

- The DC micro-plasma source was successfully coupled to the FT IT- mass analyzer
- Direct coupling was realized using a quartz capillary (GC column, length: 15 mm, ID 0.5 mm)
- Adjustable valve opening times and reversepumping of the gas load allow sampling at gas pressures up to 1000 mbar
- Optimum trap pressure is reached within seconds after sampling, thus the temporal resolution of measurements in the pptV-range is about 30 s
- The system allows temporally resolved observations of ion-molecule reactions by multiple stimulation of the ion population held inside the trap.

Analytical Performance:

- Limit-of-detection: 130 pptV toluene in nitrogen @ S/N = 6
- Highly linear dynamic range over 5 orders of magnitude

Outlook

- Benchmark measurements (LOD, dynamic range) in other gas matrices
- e.g. in hydrogen with protonation with H_3^+
- Further investigations on ion molecule reactions • Is a simplification of the setup possible?
- Up to now an additional pumping stage is necessary for reverse-pumping to reduce trap
- pressure swiftly • Improvement of the temporal resolution

Literature

- Anicich; An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics; JPL-Publication-03-19, 2003, Pasadena, CA, USA
- Schmidt, M.; Brockhaus, A.; Brockmann, K.; Benter, Th.; Laue, A.; Aliman, M.; Using a Fourier-transform quadrupole ion trap
 - operating with advanced ion excitation methods for high performance mass analysis of organic hydrocarbons; 62nd ASMS Conference on Mass Spectrometry and Allied Topics; Baltimore, MD, USA (2014)

Acknowledgement

Zeiss SMT GmbH, Oberkochen, Germany is gratefully acknowledged for supplying the Instruments and for financial support.

We thank PAC Plasma Applications Consulting GmbH & Co. KG, Germany for support and constructio of the plasma source.

The **German Chemical Society** (GDCh), division: Analytical Chemistry, is acknowledged for financial support.