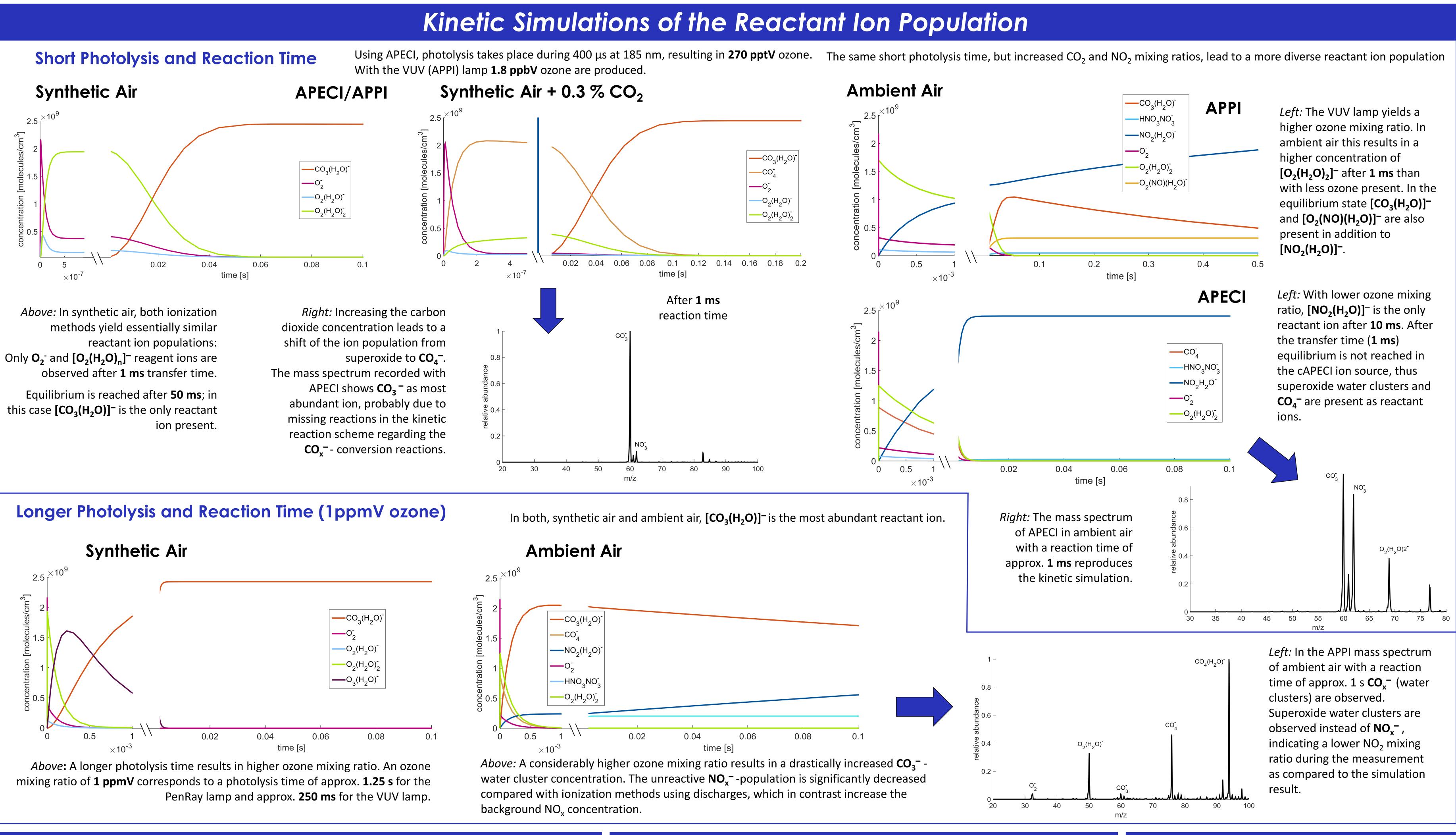
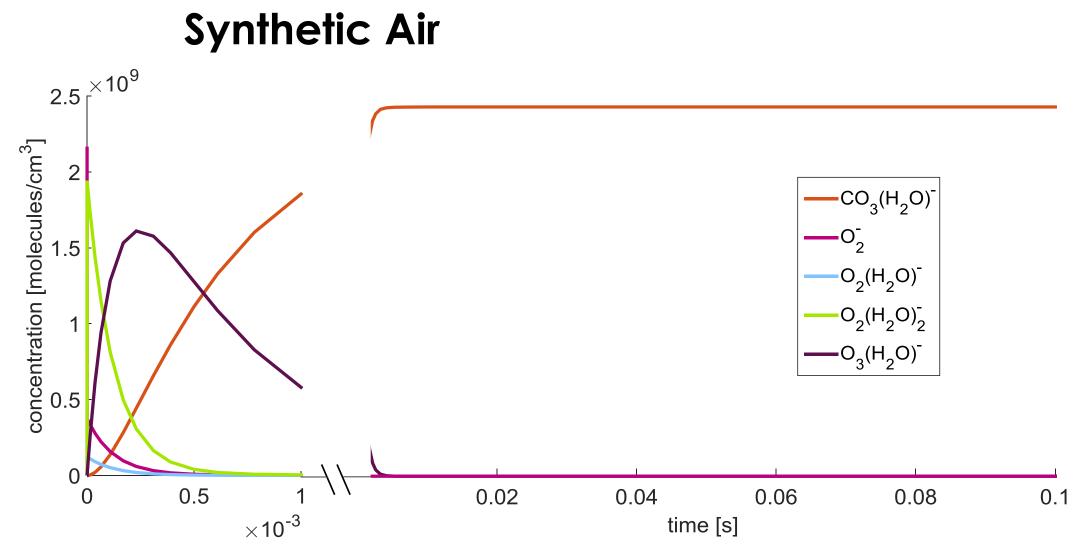
On the ionization mechanism in atmospheric pressure negative ion mass spectrometry – the role of ozone and CO_2 –

Introduction

Background:

- The ionization mechanisms prevailing in negative ion atmospheric pressure mass spectrometry are not yet fully unraveled
- Determination of the influence of different reagent ions on the ionization mechanism and analyte ion product distribution is necessary
- Different ionization methods, e.g., APPI, APCI, DART or electron generation via the photoelectric effect (APECI) appear to exhibit largely identical ionization mechanisms following reagent ion generation ^[11]
- Ionization methods such as APPI or APECI produce large amounts of ozone when oxygen is present in the irradiated ion source region
- Small molecules, which are ubiquitous in atmospheric pressure ion sources (e.g., CO_2) or generated during the ionization process (e.g., O_3 or NO_3) may influence the ionization process
- Rate constants of reactions regarding these molecules and their ions are well known from e.g. atmospheric chemistry
- The reaction time, i.e., the dwell time in the collision dominated regions of the sampling stages of the mass spectrometer seems to be a crucial factor determining the primary ion distribution

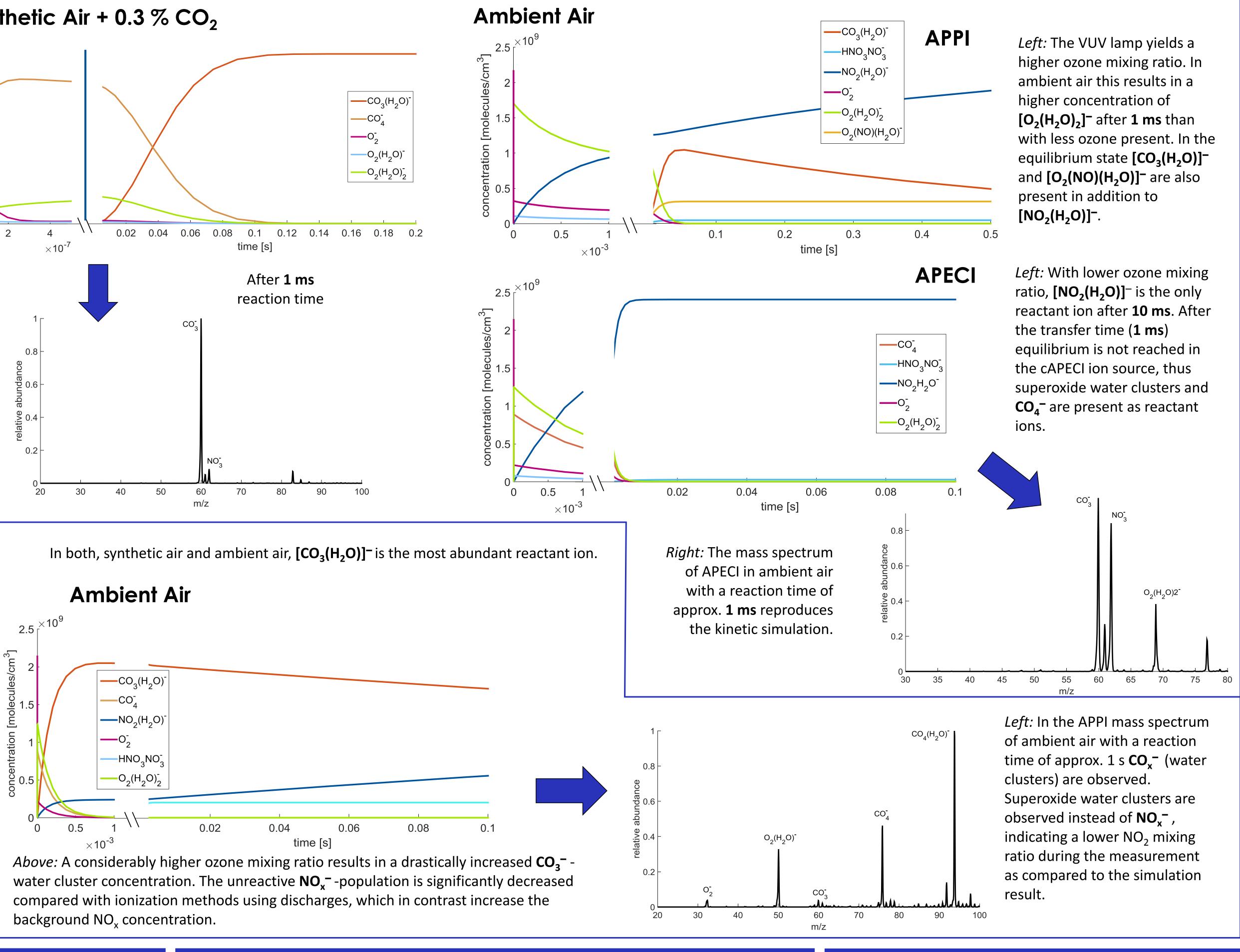

Approach:


- Using APPI and APECI with different transfer times
- Kinetic simulations are used to reproduce the experimental results
- The applied reaction scheme includes 152 reactions. The rate constants are taken from [1-8]

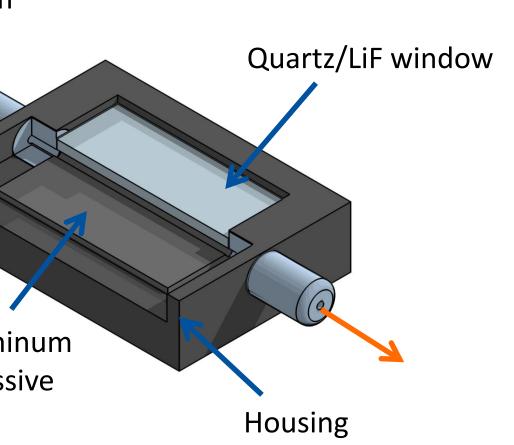
Methods

Experimental Setup

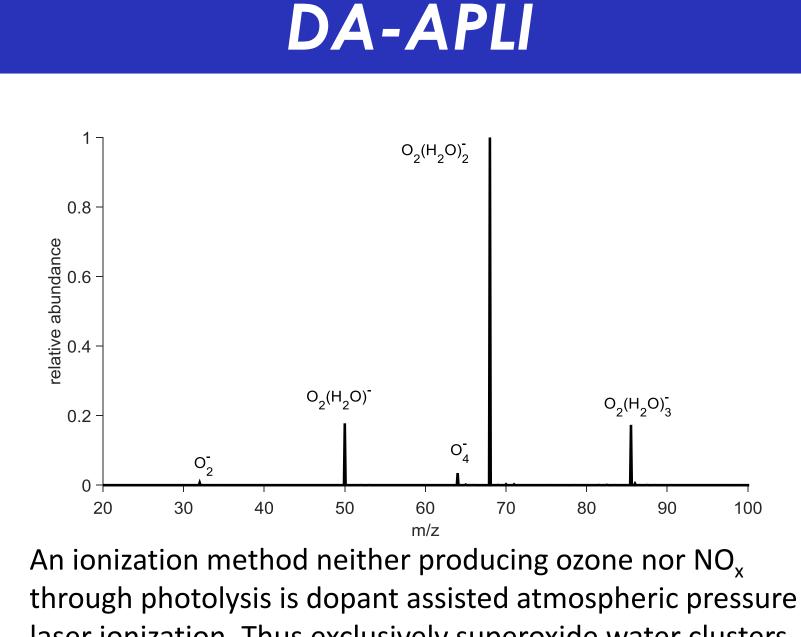
MS:	Esquire 6000 QIT, Bruker Daltonic			
APPI:	Kr-RF-VUV lamp, λ =124 nm			
APECI:	Low pressure mercury lamp (PenRay) λ =185 nm, anodized aluminum as photoemissive material			
APLI:	CryLas FQSS 266-50 Nd:YAG; λ = 266 nm			
Ion Sources:	Custom-built capillary ion sources with approx. 400 μs or 1 s photolysis transfer time			
Ozone Detector:	Environment S.A. O3 42 Module			
Kinetic analysis:	Chemked reaction kinetics solver,			
	Version 3.3			



Circle Dates Dates


	SIN	nulatio	n Param	eters		
art Concentrations				Possible Reactant lons		Short Photolysis ar
	Concentrat Synth. Air	ions S. Air + CO ₂	Ambient Air	O [−] O(H ₂ O) [−]	CO ₃ ⁻ CO ₃ (H ₂ O) ⁻	Analyte gas stream
N ₂	80 %	80 %	79 %	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	т	
O ₂	20 %	20 %	20 %		HCO ₃ (H ₂ O) [−]	
H ₂ O	100 ppmV	100 ppmV	1 %		<u> </u>	
NO	0.1 ppbV	0.1 ppbV	5 ppbV			
NO ₂	0.1 ppbV	0.1 ppbV	50 ppbV		۷.	O ₃ ⁻ Anodized alumi
HNO ₃	10 pptV	10 pptV	10 pptV		$HNO_3NO_3^-$	
CO ₂	0.1 ppmV	0.3 %	0.04 %		NO ₃ ⁻	
electrons	100 pptV	100 pptV	100 pptV	$O_3(H_2O)_2^-$	O ₂ NO(H ₂ O) [−]	as photoemis
O ₃	Determined by photolysis time and measurements; concentrations given above		OH ⁻ OH(H ₂ O) ⁻ OH(H ₂ O) ₂ ⁻	O ₂ NO(H ₂ O) ₂ ⁻	material Photolysis time: app	

<u>Valerie Derpmann¹</u>; Florian Stappert²; Christine Polaczek²; Hendrik Kersten²; Thorsten Benter²



Ion Source


and Reaction Time

Ionization takes place in an ion source integrated into an inlet capillary. A UV- or VUV-lamp mounted on top of the ion source provides the light for photoelectron generation (APECI) or for single photon generation (APPI). A flute milled inside the metal leads to an identical gas flow as compared to standard capillaries. The photoemissive material is anodized aluminum.

prox. 400 µs; Transfer time: approx. 1 ms

¹ Carl Zeiss SMT GmbH, Oberkochen, Germany ² Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- The experimentally determined mass spectra are well reproduced by the kinetic simulations
- Small deviations are observed, most probably due to missing reactions in the reaction scheme
- For short photolysis times, as realized in the capillary APECI source, only small amounts of ozone are generated
- In synthetic air:
- Superoxide water clusters are the only reactant ions observed after 1 ms, longer reaction times lead to CO_4^-
- Increasing the carbon dioxide concentration leads to a shift in the reactant ion population towards CO_4^- in the simulation toward CO_3^- in the experiments
- In ambient air the amount of ozone produced controls the reactant ion population
- Low ozone mixing ratios (APECI) lead to NO_x⁻-ions after long reaction times, which are unreactive towards most analytes. Short reaction times allow that superoxide is present as reactive species
- High ozone mixing ratios (APPI) lead to a higher amount of CO_x⁻, which is more reactive than NO_v⁻
- Short reaction times (capillary ion source) and/or the absence of neutral photolysis products (APLI) are beneficial to obtain favorable reactant ion populations consisting solely of superoxide and CO_x^-

Literature

-) F.C.Fehsenfeld, A.L.Schmeltekopf, H.I.Schiff, E.E.Ferguson; *Laboratory Measurements of* negative ion reactions of atmospheric interest, Planet Space Sci., 15, 1967
- 2) B.Gravendeel, F.J.de Hoog; *Clustered negative ions in atmospheric negative corona*
- discharges in the Trichel regime, J. Phys. B.: At. Mol. Phys., 20, 1987 3) F.C.Fehsenfeld, E.E.Ferguson; Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys., 61, 1974
- D.W.Fahey, H.Böhringer, F.C.Fehsenfeld, E.E.Ferguson; *Reaction rate constants for O2-*
- (H2O)n ions n = 0 to 4, with O3, NO, SO2, CO2, J. Chem. Phys., 76(4), 1982) R.G. Ewing, M.J.Waltman; *Mechanisms for negative reactant ion formation in an* atmospheric pressure corona discharge, Int. J. Ion Mobil. Spec., 12, 2009
- 6) E.E.Ferguson; *Negative ion molecule reactions,* Can. J. Chem., 47, 1969
- 7) J.D.Skalny, T.Mikoviny, S.Matejcik, N.J.Mason; An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air, Int. J. Mass Spec., 233, 2004 8) K.Naguto, Y.Matsui, T.Miyata, T.Yamauchi; An analysis of the evolution of negative ions
- produced by a corona ionizer in air, Int. J. Mass Spec., 248, 2006 9) V.Derpmann, S.Albrecht, T.Benter; The Role of Ion Bound Cluster Formation in Negative
- Mass Spectrometry, Rapid Comm. Mass Spectrom. 26, 2012 10) V. Derpmann, W. Wissdorf, D. Mueller, T. Benter; Development of a New Ion Source for Capillary Atmospheric Pressure Electron Capture Ionization, 60th ASMS Conference on
- Mass Spectrometry and Allied Topics Vancouver, BC, Canada, 2012 11) C.N.McEwen, B.S.Larsen; Ionization mechanisms related to negative ion APPI, APCI and
- DART, J. Am. Soc. Mass Spectrom., 20, 2009

Acknowledgement

- Financial support is gratefully acknowledged:
- German Research Foundation (DFG) within projects BE 2124/7-1 and BE 2124/4-1

laser ionization. Thus exclusively superoxide water clusters are generated as reactant ions, even in ambient air.