In-situ monitoring of atmospheric degradation product studies of aromatic hydrocarbons with CAPI- and APLI-MS

Introduction

Overview:

General procedure for photochemical degradation experiments:

- 1)The compound of interest and the photo labile precursor for the formation of OH radicals are inserted into a UV/VIS transparent chamber and backfilled with synthetic air.
- 2) Initiation of the experiment by the exposure to visible/near-UV light.
- 3) Investigation of reactant degradation and product formation.

Challenge:

Formation of diverse degradation products in mixing ratios down to the sub-ppbV as well as in the ppmV range (NO_x, HNO_x) requires the application of sophisticated analytical methods and tools. Care has to be taken regarding the impact of superimposed ion chemistry when analyzing unknown compositions with API MS.

Approach:

Multidimensional analytical setup with Atmospheric Pressure Laser Ionization(APLI)/Capillary Photo Ionization(CAPI) MS and Fourier Transform Infrared (FTIR) spectrometry. Mechanistic conclusions are derived from all the available analytical information.

Methods

MS	Bruker esquire6000 quadru- pole ion trap equipped with a home-built laminar flow ion sources (LFIS) for gas phase sample introduction.
lonization sources	Home-built argon spark discharge lamps and DPSS Laser 266 nm (FQSS 266-50, CryLas, Berlin, Germany)
FT-IR	Long path FT-IR with 484.7 m path length (Nexus, Thermo Nicolet Corp., Madison, WI, USA)
Degradation experiments	Large Volume photoreactor (1080 L) for gas phase degradation studies of atmospherically relevant compounds with OH radicals
Chemicals	P-xylene, MeONO, NO

Same sample composition, two different ionization positions

lan Barnes; Hendrik Kersten; Justinian Bejan; Thorsten Benter

Experimental Setup

Challenge for MS Investigations @ 1 atm: Ion Transformation Processes

NO	+ UH +		$HINO_2 +$	IVI
NO_2	+ OH +	$M \longrightarrow$	+ HNO ₃ +	Μ

APPI position: High gas phase acidity of HNO₃ leads to complete loss of MS information due to generation of a thermodynamically controlled ion distribution.

CAPI position: Preservation of MS information due to generation of a kinetically controlled ion distribution.

Pool of Available Analytical Information

p-xylene Degradation Pathways (excerpt)

One degradation sample, two different ionization positions

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- A multidimensional analytical setup was establshed for in-situ monitoring of degradation studies in particular aromatic hydrocarbons
- \rightarrow **APLI** selective and sensitive for ring retaining products
- \rightarrow **CAPI** non-selective and sensitive
- \rightarrow **PICI** information on gas phase basicity
- \rightarrow **NICI** e.g., nitro-group containing compounds are amenable; information on electron affinity or gas phase acidity

\rightarrow Different ionization positions

comparison of differently progressed ion chemistry yields information on chemical reactivity of species; preservation of MS information

Temporal evolution of product formation

- time resolution below 1s, with limits of detection in the lower ppbV range for CAPI and pptV range for APLI; positive and negative mode
- \rightarrow **CID** structural information
- \rightarrow **FT-IR** structural information; partial quantification, but low sensitivity
- Several degradation studies were successfully performed

Literature

- Calvert, J.G.; Atkinson, R.; Becker, K.H.; Kamens, R.M.; Seinfeld, J.H. Wallington, T.J.; YarwoodsG. The mechanisms of atmospheric oxidation o aromatic hydrocarbons; Oxford University Press, USA, 2002. 2)Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics – From Air
- Pollution to Climate Change; John Wiley and Sons, Inc.: New York, NY, USA, **1998**. 3)Kersten, H. Development of an Atmospheric Pressure Ionization source for
- in situ monitoring of degradation products of atmospherically relevant volatile organic compounds, Dissertation, Bergische Universität Wuppertal, Wuppertal, 2011; urn:nbn:de:hbz:468-20110418-092806-6
-)Kersten, H.; Derpmann V.; Barnes, I.; Brockmann, K. J.; Benter, T.; O ´ Brien R. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: Capillary Atmospheric Pressure Photo Ionization (CAPI), to be published 2011.

Acknowledgement

Financial support of this work by the German Research Foundation (DFG) within project POXSA (BE 2124/4-1) is gratefully acknowledged.

25