Windowless Miniature Spark Discharge Light Sources for Efficient **Generation of VUV Radiation Below 105 nm for On-Capillary APPI** (CAPI)

Introduction

Overview:

Common Atmospheric Pressure Photoionization (APPI) radiation sources make use of windows to seal the VUV generating discharge region from the remaining MS environment. This is mainly done to prevent the discharge being perturbed or quenched. However, any window material used for VUV transmission leads to:

- \rightarrow restriction of transmission above the optical cutoff (e.g., LiF: 105 nm)
- \rightarrow severe reduction of transmission efficiencies above the cutoff

Challenge:

Design of a stable and efficient VUV radiation source without the need of window material.

Approach:

Spark discharges within apertured, intersecting capillary assemblies. Pressure balanced separation is used for sustained stable VUV emissions.

Methods

MS	Bruker esquire6000 quadru- pole ion trap and a Bruker micrOTOF orthogonal time of flight MS, both equipped with home-built laminar flow ion sources (LFIS) for sample delivery
Radiation source	Home-built spark discharge lamps
Discharge gases	Helium, Argon and mixtures of both
Power supply	Custom designed DD20_10 C-Lader (Hartlauer Präzisions- elektronik GmbH, Grassau, Germany)
Spectro- scopy	VM 200 VUV monochromator (Resonance, Ltd. Barrie, On, Canada)
Gas phase samples	For LOD determination: Gas phase sampling from a large volume photoreactor (1080 L with gradual enrichment of the analyte
Chemicals	Benzene, 2-butanone

- static pressure p_{static})

Hendrik Kersten; Klaus J. Brockmann; Rob O'Brien; Thorsten Benter

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- CAPI is a novel photoionization source operated windowless
- \rightarrow high frequency of sparks
- \rightarrow medium to atmospheric pressure in the discharge region
- \rightarrow continuous discharge gas flow (100 -500 mL/min)
- \rightarrow cold discharge
- \rightarrow line emission
- \rightarrow high photon flux on a small illuminated area
- \rightarrow high temporal and spatial discharge stability
- \rightarrow ionization via VUV radiation and metastables (Penning ionization) possible
- CAPI is a cost efficient and powerful ion source
- CAPI allows for flexible discharge gas selection and thus flexible ionization characteristics
- Future aspects:
- \rightarrow systematic investigations on discharge gas composition and attainable radiation/metastable formation
- \rightarrow systematic investigations on the correlation between the UV/VIS spectra, the discharge chemistry and the VUV generation/ metastable formation

Literature

- Kersten, H. Development of an Atmospheric Pressure Ionization source for in situ monitoring of degradation products of atmospherically relevant volatile organic compounds, Dissertation, Bergische Universität Wuppertal, Wuppertal, **2011**; <u>urn:nbn:de:hbz:468-20110418-092806-6</u>
- Kersten, H.; Derpmann V.; Barnes, I.; Brockmann, K. J.; Benter, T.; O ² Brien R. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: Capillary Atmospheric Pressure Photo Ionization (CAPI), to be published **2011**.
-) Korth Kristalle GmbH VUV-Transmissionsspektrum von LiF, 2010;
-) Ralchenko, Y.; Kramida, A. E.; Reader, J.; NISTASDTeam(2008) NIST Atomic Spectra Database (version3.1.5), 2008; http://physics.nist.gov/asd3) Druyvesteyn, M. J.; Penning, F. M. The Mechanism of Electrical Discharges in Gases of Low Pressure Reviews of Modern Physics 1940, 12, 87.

Acknowledgement

Financial support of this work by the German Research Foundation (DFG) within project POXSA (BE 2124/4-1) is gratefully acknowledged. The authors thank Resonance Ltd., Barrie, On, Canada for collaboration on VUV measurements