

Introduction

Challenges:

- Development of an ion source with long term stability for analytes with high electron affinity (e.g. nitro-compounds, oxygenated PAH) within the inlet capillary duct but without modifying the installed glass capillary $(\rightarrow Bruker instruments)$
- Coupling of GC with cAPECI-MS

Approach:

- \rightarrow Ionization upstream of the inlet capillary leads to ion dwell times > 10 ms and thus potentially to ion transformation reactions
- \rightarrow Modification of the inlet capillary of an API mass spectrometer is possible *without* affecting the ion transport properties of unipolar ion currents as long as appropriate materials are used (see results, top right)
- \rightarrow Extending the capillary duct into the ion source retains the short reaction times typical for all capillary ionization methods (cf. poster #MP284)
- \rightarrow Anodized aluminum delivers a high and stable photo electron yield; surface aging/oxidation was not observed
- \rightarrow For GC coupling a heated ion source and a matching transferline is required

Methods

Experimental Setup

MS	Esquire 6000 QIT, Bruker Daltonic
Ion Sources	Custom capillary ion sources with anodized aluminum as photo emissive material
Radiation Source	PenRay Mercury low pressure UV lamp (λ = 185 nm and 254 nm)
GC	GC 7890 A, Agilent Technologies Inc.
Transferline	Custom temperature-controlled GC-transferline
Ion Current Measurements	617 Programmable Electrometer, Keithley (see #MP278 for setup details)

Intensities of the observed ion signals for approx. 40 ppbV 3-methyl-2nitrophenol in dependence of the oxygen concentration; "Sum" stands for the sum of all signals except from the [M-H][−], 152 m/z.

sources.

metal capillary segment between two BS glass capillary sections

capillary is required for stable ion currents

No.	Compound	Abbr.	Molar Mass [g/Mol]	Peak Width (FWHM) [s]	Peak Area	S/N	Concentration [ng/µL]
1	2-Nitrophenol	NP	138	4.8	1045348	427	10
2	2,4,6-Trimethylphenol	TMP	136	2.2	8121439	306	10
3	3-Methyl-2-Nitrophenol	3M2NP	153	2.9	5446208	709	10
4	2,4-Benzoquinone	BQ	108	4.1	2342989	124	50
5	2,4-Dinitrophenol	DNP	184	5.7	1743635	114	10
6	2,4-Dinitrotoluene	DNT	182	7.4	2002459	104	50

Progress in characterizing capillary Atmospheric Pressure Electron Capture Ionization (CAPECI)

Valerie Derpmann; David Mueller; Thorsten Benter

Ion Source Development

2.5 ⊤^{x 10}ັ $y = 1.32 \cdot 10^4 x + 2.18 \cdot 10^4$ $R^2 = 0.998$ Main gas stream Heating block - Hg-lamp approx. 150 °C \mathcal{O} Inlet capillary 20 60 Concentration [µMol/L] GC transferline Sheath gas flow (nitrogen) 3M2NP 152 Right TMP 135 Mass spectrum of the same mixture as in the chromatogram, but without chromatographic BQ separation. Except for 2,4-Dinitrotoluene all 108 analytes are observable with one signal (M⁻ or the [M-H]⁻). The signal at 196 m/z is possibly

the oxygen adduct of 2,6-Dinitrophenol.

chromatogram of the six pounds listed in the table. compound showed only signal - either M^- or $[M-H]^-$, efore, only the TIC is shown e chromatogram.

Influence of the Oxygen Concentration and the Reaction Time

velocities and short reaction times, comparable to that in capillary ion

50

100

150

For higher oxygen

hardly any ion

152

[M-H]⁻

m/z

200

Mass spectrum of

3-methyl-2-

nitrophenol;

approx. 40 ppbV

300

250

Limit of Detection

(S/N=3):

187 nMol/L

Determination of the

linear range of the GC-

cAPECI-ion trap setup for

2-Nitrophenol (139 m/z).

140 160

120

100

80

250

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- cAPECI is an emerging ionization method applicable for analytes with high electron affinity and/or gas phase basicity, such as
- Oxygenated PAHs
- Nitrogroup containing explosives
- Phenols
- Ionization within a cAPECI inlet capillary strongly reduces ion transformation processes, but decreasing signal intensities with time result
- Constant signal intensities with time are observed for unipolar ion streams for modified inlet capillaries, such as two joined glass capillaries or a metallic capillary segment between two glass capillaries
- Decreasing signal intensities are observed if quartz is part of the inlet capillary
- Using an ion source where the analyte is added to the reagent ions in a channel with the same inner diameter as the inlet capillary gives stable signal intensities and short reaction times
- Anodized aluminum as photo emissive material provides a non-aging surface and thus a stable electron yield with time
- GC-cAPECI measurements are performed with a similar ion source, where a custom built GC transferline is attached
- GC measurements yield good linearity and narrow peak width (nMol/L to μ Mol/L)
- With longer reaction time the oxygen concentration has a large impact on the occurrence of ion transformation products; at atmospheric conditions (20 % O_2) many ion transformation products are observed in the mass spectra

References

- 1) A. Einstein; Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. 1905, 322, 132-148. 3) V. Derpmann, H. Kersten, T. Benter, K.J. Brockmann; Ionisationsquelle und Verfahren zur
- Erzeugung von Analytionen; DE 10 2011 104 355.5; Germany, 2011.
- 4) V. Derpmann, H. Sonderfeld, I. Bejan, H. Kersten, J. Kleffmann, R. Koppmann, T. Benter; Highly Efficient Ionization of Nitro-aromatic Compounds using Photoelectron Induced Atmospheric Pressure Ionization (PAPI), 59th ASMS Conference on Mass Spectrometry and Allied Topics Denver, CO, USA, 2011
- V. Derpmann, S. Albrecht, T. Benter: The Role of Ion Bound Cluster Formation in Negative Ion Mass Spectrometry, Rapid Comm. Mass Spectrom. 26, 1923-1933, 2012. 6) V. Derpmann, W. Wissdorf, D. Mueller, T. Benter; Development of a New Ion Source for Capillary Atmospheric Pressure Electron Capture Ionization, 60th ASMS Conference on Mass Spectrometry
- and Allied Topics Vancouver, BC, Canada, 2012. 7) Kersten, H.; Derpmann, V.; Barnes, I.; Brockmann, K.; O'Brien, R.; Benter, T.: A Novel APPI-MS Setu for In Situ Degradation Product Studies of Atmospherically Relevant Compounds: Capillary Atmospheric Pressure Photo Ionization (cAPPI). J. Am. Soc. Mass Spectrom., DOI: 10.1007/s13362 011-0212-y, 2011.
- 8) Brockmann, K. J.; Wissdorf, W.; Hyzak, L.; Kersten, H.; Mueller, D.; Brachthaeuser Y.; Benter, T. Fundamental characterization of Ion Transfer Capillaries used in Atmospheric Pressure Ionization Sources, 58th ASMS Conference on Mass Spectrometry and Allied Topics; Salt Lake City, UT, USA, 2010.
- 9). Lorenz, M.; Klee, S.; Moennikes, R.; Suárez, A. L. M.; Brockmann, K. J.; Schmitz, O. J.; Gaeb, S.; Benter, T. Atmospheric Pressure Laser Ionization (APLI): Investigations on Ion Transport in Atmospheric Pressure Ion Sources, 56th ASMS Conference on Mass Spectrometry and Allied Topic Denver, CO, USA, 2008.

Acknowledgement

Financial support is gratefully acknowledged:

- VD: Graduate Student Research stipend, University of Wuppertal
- German Research Foundation (DFG) within projects BE 2124/7-1 and BE 2124/4-1