Development of a New Ion Source for Capillary Atmospheric Pressure Electron Capture Ionization (CAPECI)

Introduction

Challenge:

Development of an ionization method for analytes with high electron affinity (e.g. nitrocompounds, oxygenated PAH) within the transfer capillary of an API mass spectrometer

 \rightarrow Minimized reaction time for ion transformation processes

Approach:

- \rightarrow Use of the photoelectric effect at atmospheric pressure
- \rightarrow UV-light interaction with metal surfaces yields low energy electrons
- \rightarrow Electron capture forms exclusively negative ions
- \rightarrow No interaction with oppositely charged species possible
- Use of two half shells:
- Photoemissive material; exchangeable
- UV transparent material (Quartz/LiF)
- Replaces part of the glass transfer capillary
- Possible because of turbulent flow present in virtually all ion transfer capillaries
- Nearly identical flow through cAPECI ion source and standard capillary

• Sectioned cAPECI ion source provides

- Compatibility with most mass spectrometers
- Simultaneous use of standard ion sources

 Characteristics of transfer capillaries are now well established; the determination of rate constants of reactions between primary ions and analytes becomes thus feasible

Methods

Experimental Setup

MS:	Esquire 6000 QIT, Bruker Daltonic					
Ion Sources:	cAPECI: Custom capillary ion source					
	with silver as photoemissive material and					
	LiF-window					
	ESI: Apollo ion source, Bruker Daltonic					
Radiation Source:	PenRay Mercury low pressure UV lamp					
	(λ = 185 nm and 254 nm)					

Note: All measurements described here were performed when the ion signals became nearly constant, i.e., after some hours of operation.

Numerical Simulation

Monte Carlo Reaction Simulation See also Session MP29 Poster#670

on top of the ion source provides light at λ =185 nm. The interaction of UV light with metal surfaces produces nearly thermalized electrons. A flute milled inside the metal leads to an identical gas flow as compared to standard capillaries. The photoemissive material is

Valerie Derpmann; Walter Wissdorf; David Mueller; Thorsten Benter

Area A	Area	Reactions	Pressure [mbar] (weighted average)	Transfertime [μs]	Mont conce
Area B	А	Formation of O ₂ - Reaction with analyte	715	480	into a inside
\checkmark	В	Reaction with analyte	485	490	avera

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- cAPECI is an emerging ionization method applicable for analytes with high electron affinity or gas phase basicity, such as
- Oxygenated PAHs
- Nitro containing explosives
- Phenols
- Ionization within the transfer capillary strongly reduces ion transformation processes
- Selective ionization:
- Excellent signal-to-noise ratios
- Low limits of detection with short acquisition times
- The ion source has several advantages as compared to the previously used quartz capillary
- \rightarrow Metal/window exchangeable
- \rightarrow No sudden signal drops
- \rightarrow Simultaneous use of other ionization methods/standard ion sources
- Determination of rate constants for reactions with O_2^- possible
- Pseudo first order kinetics
- Transfer times inside capillaries are known
- Concentration distributions of reactant and product can be described by Monte Carlo simulations
- Charging effects were observed for cAPECI and other ionization methods. No charging effects are observed when:
- a) unchanged standard glass capillaries are used
- b) both ion polarities flow simultaneously through a modified capillary
- \rightarrow The reason for this charging effect is under current investigation

Literature

- A. Einstein; Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. 1905, 322, 132-148.
- V. Derpmann, K. J. Brockmann, T. Benter; Photoelectron Induced Atmospheric Pressure onization (PAPI) - a Selective Ionization Method for Molecules with High Electron Affinities 59th ASMS Conference on Mass Spectrometry and Allied Topics Denver, USA, 2011.
- V. Derpmann, H. Kersten, T. Benter, K.J. Brockmann; Ionisationsquelle und Verfahren zu Erzeugung von Analytionen; DE 10 2011 104 355.5; Germany, 2011
- V. Derpmann, H. Sonderfeld, I. Bejan, H. Kersten, J. Kleffmann, R. Koppmann, T. Benter Highly Efficient Ionization of Nitro-aromatic Compounds using Photoelectron Induced Atmospheric Pressure Ionization (PAPI) 59th ASMS Conference on Mass Spectrometry and Allied Topics Denver, CO, USA, 2011.
- V. Derpmann, S. Albrecht, T. Benter; The role of ion bound cluster formation in negative ior mass spectrometry Rapid Comm. Mass Spectrom. 2012, accepted for publication

Acknowledgement

Financial support is gratefully acknowledged:

- VD: Graduate Student Research stipend, University of Wuppertal
- German Research Foundation (DFG) within projects BE 2124/7-1 and BE 2124/4-1

	Ny kanalahisik njerisika polomiya	n gi të të për në	n för karaden som	WWWWWWWWW		
0	60	80 100 Time [min]	120	L 140		αμίλαβοπίορ άς τ 180
ΠC	1	Switching of the cAPECI	on the ion s	e UV l ource	amp o yield	of Is