Investigation of reactant ion transmission efficiency of a tubular **APCI-configuration in Laminar Flow Ion Sources (LFIS)**

Sonja Klee; Nele Hartmann; Walter Wissdorf; Klaus Brockmann; Thorsten Benter

Introduction

Challenge

Maximization of available reactant ion concentration for Atmospheric **Pressure Chemical Ionization (APCI)**

Investigation of transfer conditions and impact on obtained mass spectra of different materials for the transfer region of a Laminar Flow Ion Source (LFIS)

State of Knowledge:

- In APCI the formation of additional mass signals caused by interactions between analyte and highly reactive discharge species is often observed (e.g., oxidation)
- Obviation of direct interaction between the analyte gas flow and the hot corona discharge region is essential for the reduction of unwanted analyte transformation processes
- In Laminar Flow Ion Sources the APCI reactant ions ([H(H₂O)_n]⁺) are generated separately and merge with the analyte containing gas flow further downstream
- In general the concentration of available reactant ions is increased by the use of a tubular APCI design
- For maximization of available reactant ion concentrations the transfer of the ions within the LFIS has to be optimized
- At atmospheric pressure (AP) the transfer of ions is dominated by gas flows
- At atmospheric pressure ions strongly interact with the walls causing loss of reactant ions and "charging effects" that adversely affect the performance of ion guiding constructions

Question:

Is it possible to affect the degree of the interaction between the ions and the walls by variation of set-up parameters such as gas flows, voltages, materials, etc.?

Methods

Experimental Setup

Electrometer:	KEITHLEY 6430 SUB-FEMTOAMP REMOTE SourceMeter®
MS:	Bruker esquire3000 quadrupole ion trap
Ion Source:	Custom build tubular APCI including a commercially available APCI- <u>n</u> eedle device
Discharge Gases:	Nitrogen (5.0), Helium (5.0) and Argon (5.0)

<u>Setup 1:</u>

- **Tubular APCI source** including a commercially available APCI-needle device generally also used in LFIS (current control by *Esquire-Control*-Software, 1 - 4 μA).
- Coupling to **modular tube segments** (mimics the AP transfer-region of the LFIS); simple variation of length and material (tube segments are insulated)
- **Total ion current** measured with a directly coupled gauging mesh (insulation to the tube segments possible)
- Controlled gas inlet

Corona Current Variation (setur

- Comparable response to the varia materials
- A corona current higher than 2 μ A aluminum
- \rightarrow Change of corona discharge characteristics

Electrode Potential Variation (setup 2, (d)):

- Potential variation at the additional electrode results in a significant increase of the signal (maximum at a few hundred volts
- \rightarrow Focusing effect at AP?
- **Comparable slopes** for different tube lengths
- **Shift of the maximum** of the slope for different materials
- Maximum signal reached with floating electrode

Material Comparison

	Tube Length Variation	<u>(setup 1, (a)):</u>	
e Length = 2μA (a)	 All materials (except an intensities (up to nA us) 	odized aluminum) show ing the short tubes)	similar final signal
	\rightarrow Similar wall loss for	all materials (except ar	nodized aluminum)
Borsilicate glass surrounded by electrode array	 Large differences in the intensity 	e response times requi	red to reach the final
Teflon®	Material	Response time (s)	
PVC	Electrode arrayed Gla	ss < 1	
Borsilicate glass	Glass	< 10	
	Anodized Aluminum	~ 20	
-× - Anodized Aluminum	Teflon	~ 150	
	5 PVC	~ 450	
130	 → final signal intensit → Build-up of a → Material depender state of the bound 	ty independent of the war comparable surface law of the tresponse time for attantation attantation of the time for attantation of time for attanta	vall material yer ? ainment of an equilib
p1,(b)):		Corona-Cur	rent Variation (b)
tion of corona current for all	Borsilicate glass 1	0E-07	= /00 mL/min
	* surrounded by electrode array	8.0E-08 -	• • • • • • • • • • • • • • • • • • •
is not possible with anodized	■ Teflon® 6	5.0E-08 - × × × × × × × • • • • • • • • • • • •	; * [*] □ □ □ □ □ * * * 3.5[• * * * * * * 3.6[

Material	Response time (s)
Electrode arrayed Glass	< 1
Glass	< 10
Anodized Aluminum	~ 20
Teflon	~ 150
PVC	~ 450

- Build-up of a **comparable surface layer**?
- aterial dependent response time for attainment of an equilibrium ate of the boundary layer?

Flow Variation (setup 1, (c)):

- All materials show **low response** to variation of the N₂-flow
- At non-flow conditions no significant change in final intensity
- \rightarrow Signal is almost independent of the flow
- → Space charge driven transfer

Experimental Setups

<u>Setup 2:</u>

- Modification of setup 1 with an **additional** electrode located between tube segment and gauging mesh
- Total ion current measurement
- Variation of potential at the additional electrode

<u>Setup 3:</u>

- Direct coupling of the AP transfer region to the transfer capillary of the MS
- No contact with the walls only gas phase sampling
- Surplus of carrier gas avoids contamination with external gas

Tube Configurations

<u>Length:</u>

– 33,1 mm (short tube)

129,1 mm (long tube)

73,24 mm (medium tube)

<u>Materials:</u>

- Borsilicate glass
- Teflon®
- PVC Anodized aluminum
- Borsilicate glass surrounded by Electrode array
- (Potential gradient along the glass tube; see right

Mass Spectrometric Measurements

Influence of the Tube Material on the Mass Spectrum:

Measurements with setup 3 including PVC (e) and glass (f) as the transfer

- This kind of sampling reflects only the effect on the gas phase
- Figures (e) and (f) show the time dependent behavior of two reactant ions $(m/z 37 [H(H_2O)_2]^+$ and $m/z 55 [H(H_2O)_3]^+$) and a background signal (m/z 130)[M+H]⁺) after ignition of the discharge
- Distinct difference between the behavior of reactant ions and background
- Immediate appearance of the background signals
- Delayed response of the reactant ion signals ("accumulation")
- Change of material results in different response times

<u>General picture of the processes of reactant ions in APCI</u>

- Reactant ions $([H(H_2O)_n]^+)$ are produced in the generally accepted reaction path $(N_2^+ \rightarrow N_4^+ \rightarrow H_2O^+ \rightarrow H_3O^+ \rightarrow H(H_2O)_n^+)$ close to the corona discharge area ^[1]
- Due to the high water concentrations and large rate constants at AP conditions the equilibrium distribution of the protonated water clusters is reached after a few microseconds (n = 2 - 7; n $_{max}$ = 4 at AP and 10 ppm H₂O)^{[2], [3]}
- \rightarrow After perturbation the cluster distribution is reestablished within in a few microseconds

Within a $[H(H_2O)_n]^+$ cluster the positive charge is distributed over the entire cluster, i.e., there is no "central" proton

- The entire cluster system undergoes continuous "ligand switching" processes [4]
- The ligand switching is a fast process ^[4]
- \rightarrow Proton bound water clusters never retain a fixed size (fast dynamic process)^[5]

Model of "fast moving" protons

- Fig. (a), (e) and (f) indicate loss of ions to the walls
- Increasing the surface area results in increasing signal losses (Fig. (a))
- Reduction of the ion retention time in the transfer region impacts the signal (see electrode arrayed glass)
- Different wall loss behavior of reactant ions and background ions
- Fig (e) and (f) indicate that the loss of reactant ions establishes an equilibrium (behavior will be an admixture of wall and reactive loss) Adsorption processes in a boundary layer comprised of water (and other components) should be similar for the considered ions In the transfer region even background ions may exist as water clusters $[M+H+(H_2O)_n]^+$ (further CID processes inside the MS lead to [M+H]⁺ signal) ^[5]
- Loss due to an **electrical field effect** is unlikely (the behavior of all ions would be affected similarly) **Diffusion** should be on the same order of magnitude for the investigated range
- HOWEVER the [H(H₂O)_n]⁺ system is a fast interacting system
- \rightarrow Protons can be transferred from cluster to cluster without the need of motion of the entire cluster (cf. conductance of water)
- \rightarrow The "diffusion of H⁺" to the walls may thus become orders of magnitude faster as compared to background ions

Physical & Theoretical Chemistry Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

Downstream ion signal intensity independent of the wall material (except metal)

Build-up of a chemically comparable surface layer possible

- Material dependent response time for attaining an "equilibrium" state
- Space charge driven transfer within the transfer region
- Surface layer is affected by an externally applied potential
- The fast passing of charge inside the transfer region by proton propagation within the $[H(H_2O)_n]^+$ cluster system may generate a higher interaction between the reactant ions and the walls (Model of "fast moving" protons)

Further investigations are required for a better understanding of the impact of such boundary layers on the transfer efficiency for reactant ions in LFIS sources

Literature

- [1] Dzidic, I.; Carrol, D.I.; Stillwell, R.N.; Horning, E.C., Comparison of Positive Ions Formed in Nickel-63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutane, Ammonia and Nitric Oxide as reagents in Atmospheric Pressure Ionization Mass Spectrometry;, Anal. Chem., 1976, Vol. 48, No. 12, p. 1763-1776,
- [2] Kebarle, P., *Ion-Molecule Equilibria, How and Why*, J. Am. Mass Spec., **1992**, 3, p. 1-9
- [3] Benter, Th.;@ all ASMS 2012 MOG Talk: On the pivotal role of ion bound clusters in atmospheric pressure ionization mass spectrometry;
- [4] Midey, A.J., Reactions of H3O+(H2O)n with Formaldehyde and *Acetraldehyde*, J. Phys. Chem. A, **2000**, 104, p. 2706 – 2709
- [5] Wissdorf, W., Vautz, W., Derpmann, V., Klee, S., Benter, Th.;, Monte Carlo Simulation of dynamic Ion Mobility of small *Water Clusters,* to be published

Acknowledgement

Financial support is gratefully acknowledged:

- Bruker Daltonics GmbH (Bremen, Germany) iGenTraX UG (Haan, Germany)
- GDCh (Frankfurt a.M., Germany)

→-1000V **PVC** (e) m/z 37 m/z 55 m/z 130 ~ sport when the martine t (sec Glass (f) —— m/z 37 m/z 55 m/z 130 Man Man Markan Alanting 200 300 400 t (sec)