

Introduction

ASMS 2013:

At the ASMS conference 2013 we introduced a new approach for a GC-APPI interface attached to a high resolution Exactive[™] Orbitrap mass spectrometer [1]. The principal idea of the source design was rather simple: A tightly sealed ionization volume and a chemically and photo-physically inert matrix. In combination with the well defined sample injection via the GC this concept is in full accord with the necessary prerequisites for pure and efficient direct photoionization.

ASMS 2014:

Details of a significantly improved GC-APPI interface are presented.

Methods

mass spectrometer

Exactive[™] Orbitrap, Thermo Scientific

- sampling rate: 10 Hz
- resolution: 10 000
- scan range: 50 1000 m/z

custom ion source

nitrogen with low ppbV impurity level

- flat gasket sealing (Sigraflex[®], A.W.
- Schultze, Geesthacht, Germany)
- 400 W heater and power supply
- ion source material Invar36
- cone coating: electrochemical gold layer or PVD double layer of Al and MgF₂
- Syagen Kr RF lamp with power supply
- Omega[®] CC High Temperature Cement
- inorganic coating: Ipseal Khaki
- (Indestructible Paint, Ltd.)

gas supply

nitrogen with low ppbV impurity level

- compressed gas cylinder
- Vici Metronics N₂ purifier
- mass flow controller (Bronkhorst)

gas chromatograph

GC 450 series, Thermo Scientific

- column: TR-Dioxin 5MS
- (30 m x 0.25 mm ID x 0.1 μ)
- ► GC transfer line: 325°C
- Helium (99.999 %) with 1.5 ml/min

samples

EPA 8270 LCS Mix 1, Supelco

b dilutions: 50 fg/ μ l – 1 ng/ μ l

CFD simulations

Autodesk Simulation CFD

- capillary)

- density overlap

Progress in the development of a GC-APPI source with femto-gram sensitivity

Hendrik Kersten; Kirsten Haberer; Kai Kroll; Faezeh Dousty; Thorsten Benter

Physical & Theoretical Chemistry Wuppertal, Germany **Institute for Pure and Applied Mass Spectrometry**

heate

Conclusions

improvements:

- O-rings replaced by Sigraflex[®] flat gaskets
- cemented MgF₂ window
- ion source enclosure made of Invar36
- conical ionization volume and asymmetrical make-up gas inlet maintain a vortex flow pattern
- GC-flow injection into vortex core
- carefully balanced system of irradiation time, convectional and diffusive peak broadening, and radiation overlap with the eluent
- careful surface finish of the ion source cone

current performance:

- 24/7 heating of the entire setup at 325°C for several weeks
- no background except from column bleeding starting at around 280°C
- peak width down to 0.6 s (FWHM)
- lower limit of detection in the fg range

see also:

A.C. Peterson et al. 62nd ASMS Conf., Baltimore, MD, 2014, MOD pm 4:10.

T. Benter et al., 62nd ASMS Conf., Baltimore, MD, 2014, MP 315.

T. Kauppila et al., 62nd ASMS Conf., Baltimore, MD, 2014, MP 299.

Literature

- H. Kersten, K. Kroll, K. Haberer, T. Benter, GC- and the Exactive – Development of an API Interface Proceedings of the 61st ASMS Conference on Mass Spectrometry and Allied Topics, Minneapolis, MN, USA (June 2013)
- Vaikkinen, A.; Haapala, M.; Kersten, H.; Benter, T.; Kostiainen, R.; Kauppila, T. J.: Comparison of Direct and Alternating Current Vacuum Ultraviolet Lamps in Atmospheric Pressure Photoionization. *Analytical Chemistry.* **84**, 1408-1415
- Hass, G.; Tousey, R.: Reflecting Coatings for the Extreme Ultraviolet. Journal of the Optical Society of America. 49, 593-601 (1959).

Acknowledgement

Thermo Scientific is acknowledged for supplying the Exactive, the GC and the GC column.