

Measurements of electronically excited noble gas species radiating in the far VUV

Introduction

Main Question:

- A number of ambient ionization methods such as DART or FAPA are based on noble gas plasmas. It is assumed that in many underlying mechanisms correspond to APCI, however, the basic reaction steps leading to the reactant ions are rather unknown.
- He^M are postulated to ionize the analyte molecules in ambient methods due to penning ionization.

Corresponding long transfer to distances to reach the analytes and the high collision rates at atmospheric pressure, is the use of He^M as direct reactant possible at all? What are the driving plasma mechanisms?

Approach:

- VUV-emission spectroscopy of Helium spark discharges with trace amounts of different noble gases.
- Time resolved measurements of the radiative decay of He_2^* .

Methods

Spark discharge

power supply

> custom DD20 10 C-Lader, Hartlauer Präzisionselektronik GmbH, Grassau, Germany

electrode assembly

- \succ blunted and bent cannulas (discharge region: 2 mm)
- > anode: discharge gas supply
- > cathode: actively pumped to balance the anode gas flow

discharge gas supply

- \succ main gas flow of Helium (375 mL/min)
- > admixture of N_2 , O_2 , Ne and Ar (< 1 mL/min)

VUV spectrometer

- > ARC VM-502 VUV spectrometer (Acton Research Corporation, Acton, MA, USA) with a MgF_2 coated parabolic grating
- > modified for operation with helium at atmospheric pressure (counter helium flow of 100 mL/min through the entrance

detection/ signal processing system

- > scintillator-coated lens with Na-salicylate (custom made via piezo-nebulizer)
- > Photomultiplier tube, R955, Hamamatsu Photonics, K.K., Hamamatsu City, Japan
- \succ custom made amplifier (factor 1000)
- > A/D converter, R232-ADC16/24, taskit GmbH, Berlin, Germany
- \succ custom software (VB 2010 Express)

Oscilloscope

LeCroy LT344

<u>VUV-spectrometer:</u>

- Helium background pressure 1030 mbar
- A scintillator, i.e., sodium salicylate coated glass window, between grating and photo multiplier tube converts the dispersed VUV radiation to visible light (420 nm)
- Spark discharge lamp is directly positioned in front of the entrance slit of the VUV spectrometer
- A continuous helium counterflow prevents that reactive species enter the chamber
- Discharge gas was provided by a 2 L/min flow controller for Helium and a 1 mL/min flow controller for the added noble gases
- Entire setup can be evacuated to 1.10⁻⁵ mbar

lan Barnes; Sebastian Klopotowski; Kai Kroll; Hendrik Kersten; Thorsten Benter

VUV-Spectrometer for Time Resolved Measurements at Atmospheric Pressure

VUV Emission Spectra

Close up of the spark discharge flange:

- Custom made spark discharge lamp; the electrodes are connected to the oscilloscope with a potential divider to monitor current and voltage
- Identical setup as the cAPPI ion source inside an inlet capillary

Time Resolved Measurements

gas in

- 1) Time and wavelength resolved photomultiplier signal. The temporal profile follows the temporal current and voltage profile (2 and 3).
- 2) Temporally resolved current signal measured with a low resistor between anode and ground. The peak current is 1A, decreases within 10 µs and stays quite constant at 0.3 A for 50 μ s.
- 3) The temporally resolved voltage signal is phase shifted by 90° compared to the current signal. The breakdown voltage is 1 kV which is in good agreement with the Paschen criteria.

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

- time resolved emission spectroscopy revealed a delay in the formation of the electronically excited trace species compared to the He_2^*
- The quenching efficiency of helium dimers increases with the mass of the added rare gases in the buffer gas (0.4 % Ne, Ar, Kr or Xe in He)
- the emission line intensities of impurities, oxygen and nitrogen, decrease with increasing quenching efficiency
- based on time resolved VUV emission spectroscopy, this setup is capable of revealing fundamental mechanistic processes in plasma driven ion sources

Outlook

- kinetic measurements of the lifetimes of Helium dimers in dependence of different reactants
- use of the other rare gases as the main constituent with trace amounts of the remaining rare gases added
- observation of the Helium metastables with a custom designed mass spectrometer inlet

Literature

- [1] Kersten, H.; Brockmann, K. J.; Benter, T.; O'Brien, R. Windowless Miniature Spark Discharge Light Source for efficient Generation of VUV Radiation below 100 nm for on-capillary APPI, Proceedings of the 59th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, USA, 2011
- [2] Kumar, V.; Datta, A. K., Vacuum Ultraviolet Scintillators Sodium Salicylate and p-terphenyl, Applied Optics, 18, 1414-1417, 1979
- [3] Kersten, H.; Dlugosch, M.; Kroll, K.; Brockmann, K. J.; Benter, T.; O'Brien, R., Progress in VUV Measurements of a Spark Discharge Lamp used for capillary Atmospheric Pressure Photoionization (cAPPI), Proceedings of the 59th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, USA, 2011

Acknowledgement

Financial support German Research Foundation (DFG) within project KE 1816/1-1 is gratefully acknowledged. Sebastian thanks Sonja Klee, Klaus Brockmann and Valerie Derpmann for the preparation of this poster.

