SYMOMETRY BEYOND PERTURBATION THEORY: FLOPPY MOLECULES AND ROTATION-VIBRATION STATES

Conference Paper · June 2015
DOI: 10.15278/isms.2015.MI02

CITATIONS
0

READS
5

3 authors:

Hanno Schmiedt
University of Cologne
10 PUBLICATIONS 17 CITATIONS

Per Jensen
Bergische Universität Wuppertal
337 PUBLICATIONS 6,814 CITATIONS

Stephan Schlemmer
I. Physikalisches Institut, Universität zu Köln
281 PUBLICATIONS 3,548 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Energy cluster formation in H2X and H3X molecules View project
- Simulation of molecular rovibronic spectra View project

All content following this page was uploaded by Hanno Schmiedt on 30 November 2016.
The user has requested enhancement of the downloaded file.
In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH$_5^+$)a. For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) groupb. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3)c. This leads to a group theoretical foundation of the technique of equivalent rotationsd. The MS group of protonated methane (G$_{240}$) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH$_5^+$ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed.

cBeing precise, we must include O(3) and SU(2), but our theory can be easily extended to these two groups.