Beyond rotation-vibration separation: Extremely flexible protonated methane

“I anticipate that this enfant terrible will be caught in interstellar space far ahead of its theoretical understanding which will take at least a few more decades.” [1]

Motion in CH$_5^+$

- Five protons but four bonds
- No well-defined, static equilibrium geometry
- Internal rotations & flips
 \[\text{ Rotation and vibration inseparable } [2] \]

\[
\hat{H}_{\text{full}} = \hat{H}_{\text{rot}} + \hat{H}_{\text{LAV}} + \hat{H}_{\text{SAV}} \\
|\psi_{\text{full}}\rangle = |\psi_{\text{rot}}\rangle |\psi_{\text{LAV}}\rangle |\psi_{\text{SAV}}\rangle
\]

First observation: Free internal rotation angle and axis!

Pedagogical example for better understanding: Rigid methane

- Non-vibrating, static methane molecule = rigid spherical top
- Hamiltonian: $\hat{H} = B (\hat{j}_x^2 + \hat{j}_y^2 + \hat{j}_z^2)$
- Full rotational symmetry: Group $K(\text{mol})$, isomorphic to $\text{SO}(3)$
- Irreducible representations $D_J, J = 0, 1, 2, 3, 4, \ldots$

$$E_J = B J(J + 1)$$

- Vibrating, actually existing methane molecule
- Molecular symmetry group $T_d(M) \subset \text{SO}(3)$

Pedagogical example continued: Protonated methane simplified

- Protonated methane with two “soft” vibrations
- Now five-dimensional rotor \([4]\): \(\hat{H} = \frac{B}{2} \sum_{a<b} \hat{J}_{ab}^2 \)
- 5D rotational symmetry: Group SO(5)
- Irreducible representations \([n_1, n_2]\), \(n_1 \geq n_2 = 0, 1, 2, 3, 4, \ldots \)

\[
E[n_1,n_2] = \frac{B}{2} \{n_1(n_1 + 3) + n_2(n_2 + 1)\}
\]

- Fully vibrating, actually existing protonated methane molecule
- Molecular symmetry group \(G_{240} \subset SO(5)\)

Labeled by irreducible representations of \(G_{240} \subset SO(5)\)

Rovibrational energies of CH$_5^+$ from experiment: Combination differences

- Scan rovibrational transitions (infrared)
- Construct the differences of all transitions (Combination differences = CoDiffs)
- If two transitions share upper level, this CoDiff occurs regularly (many upper states!)

Differences rebuild ground state energy levels [6]

Direct comparison of theory and experiment

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>[10]</td>
<td>[11]</td>
<td>[20]</td>
<td>[21]</td>
<td>[22]</td>
<td>[30]</td>
<td>[31]</td>
<td>[32]</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td></td>
<td>2G2</td>
<td></td>
<td>3G2</td>
<td></td>
<td>G2</td>
<td>4G2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3G2</td>
<td>G2</td>
<td>4G2</td>
<td></td>
<td>8G2</td>
<td>4G2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td></td>
<td>6H2</td>
<td></td>
<td>H2</td>
<td>2H2</td>
<td>7H2</td>
<td>9H2</td>
<td>5H2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[41]</td>
<td>[42]</td>
<td>[43]</td>
<td>[50]</td>
<td>[51]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy
[cm\(^{-1}\)]

Dashed arrows are experimental GS combination differences

First assignment of any of these experimental data consistent in energy and symmetry!
Dramatis personæ

Ponderers (answer phone, pontificate…)

Hanno Schmiedt
Principal doer

Stephan Schlemmer

Per Jensen

Many thanks for your attention!