THE RENNER EFFECT

The PH₂ molecule

Term values for some N_{KaKc} states

Term values for some N_{KaKc} states

3 ₃₀ F ₁ 104.0 F ₂ 103.3	10 _{10,0} F ₁ 966.2 10 _{10,1} F ₁ 966.2	
3 ₃₁ F ₁ 102.1 F ₂ 101.2	$\frac{10_{10,0}}{10_{10,1}} \frac{F_2}{F_2} \frac{963.3}{963.3}$	
$\begin{array}{cccc} 3_{21} \ \mathbf{F}_1 & 95.6 \\ \mathbf{F}_2 & 95.3 \end{array}$	$\begin{array}{rrr} \mathbf{10_{9,1}} & \mathbf{F_1 930.3} \\ \mathbf{10_{9,2}} & \mathbf{F_1 930.0} \end{array}$	
3 ₂₂ F ₁ 85.6 F ₂ 85.2	$\begin{array}{rrr} 10_{9,1} & F_2 \ 928.2 \\ 10_{9,2} & F_2 \ 927.8 \end{array}$	

Term values for some N_{KaKc} states

3 ₃₀ F ₁ 104.0 F ₂ 103.3	10 _{10,0} F ₁ 966.2 10 _{10,1} F ₁ 966.2	30 _{30,0} F ₁ 7579.8 30 _{30,1} F ₁ 7579.8
3 ₃₁ F ₁ 102.1 F ₂ 101.2	$10_{10,0} F_2 963.3 \\ 10_{10,1} F_2 963.3$	30 _{29,1} F ₁ 7575.2 30 _{29,2} F ₁ 7575.2
3 ₂₁ F ₁ 95.6 F ₂ 95.3	$\begin{array}{rrr} 10_{9,1} & F_1 \ 930.3 \\ 10_{9,2} & F_1 \ 930.0 \end{array}$	$30_{30,0} F_2 7573.9$ $30_{30,1} F_2 7573.9$
3 ₂₂ F ₁ 85.6 F ₂ 85.2	$\begin{array}{rrr} 10_{9,1} & F_2 \ 928.2 \\ 10_{9,2} & F_2 \ 927.8 \end{array}$	$30_{29,1} F_2 7569.5$ $30_{29,2} F_2 7569.5$

Four localized Primitive Cluster States

CH⁺₂ Potential energy surfaces

 $\alpha_{e} = 77.1^{\circ}$

Molecular Orbitals

Simulation with N < 11 and T = 300 K

Simulation with N < 11 for T = 300 K

CH₂⁺ spin splittings in v₃ band

 CH_2^+ $\tilde{A}^2 B_1 \leftarrow \tilde{X}^2 A_1$

Observed - calculated (cm⁻¹)

		Just adjust the
X <i>K</i> =2←0 X ν ₃	4 -1	0.2 -2 -2 single parameter G ₀₀₁ ⁽⁻⁾ for X state to lower barrier.
à 8 ³ à 8 ¹	-30 -69	-1 -45 Nice effect on $K=2\leftarrow 0$
Ã 9 ² Ã 9 ⁰	-26 -30	But this has bushed v_3 off a bit.

Observed - calculated (cm⁻¹)

X	K=2←0	4	0.2	2 0.1	Adjust $G_{001}^{(-)}$
X	_{V3}	-1	-2	-0.4	and G_{110}
Ã	8 ³	-30	- 1	-1	
Ã	8 ¹	-69	-45	?	
Ã	9 ²	-26	-3	-3	
Ã	9 ⁰	-30	3	3	
			Perturbed by $\widetilde{X}(3,3,0)$ K = 1		

Dealing with a perturbation

If had V^{exact} and used H^{exact} with computer^{exact} would get $E^{exact} = E^{experiment}$ and no perturbations.

However, V ≠ V^{exact} so we adjust V. Problem is that a small change in V can make a big change for some E. Need enough "unperturbed" data to constrain V adjustments as try to make a fitting.

More X-state data needed, or, perhaps, we start with ab initio^{closer-to-exact}