

Variationally Computed IR Line List for the Methyl Radical CH₃

1

Ahmad Y. Adam, University of Wuppertal, Germany

Andrey Yachmenev, Center for Free-Electron Laser Science and Hamburg Center for Ultrafast Imaging, Hamburg, Germany

Sergey N. Yurchenko, University College London, UK

Per Jensen, University of Wuppertal, Germany

CH₃ radical:

- Hydrocarbon combustion processes
- Atmospheric chemistry
- Chemistry of semiconductor production
- Chemical vapor deposition of diamond
- Intermediary in many chemical processes of current industrial and environmental interest
- Exoplanetary atmospheres
- Atmospheres of Saturn and Neptune
- Interstellar medium

Line list for CH₃:

• Goal: Catalogue of predicted transitions (wavenumbers & intensities)

- RCCSD(T)-F12b /cc-pVQZ-F12 *ab initio* calculation; MOLPRO
- Equilibrium geometry planar; empirical adjustment of equilibrium C-H bond length
- Simulation of rotation-vibration spectrum with the program TROVE; line list expected to be accurate to T = 1500 K.

Potential energy expansion:

$$V(\xi_1, \xi_2, \xi_3, \xi_{4a}, \xi_{4b}; \sin \bar{\rho}) = V_e + V_0(\sin \bar{\rho}) + \sum_j F_j(\sin \bar{\rho}) \,\xi_j$$
$$+ \sum_{j \leqslant k} F_{jk}(\sin \bar{\rho}) \,\xi_j \,\xi_k + \sum_{j \leqslant k \leqslant l} F_{jkl}(\sin \bar{\rho}) \,\xi_j \,\xi_k \,\xi_l$$
$$+ \sum_{j \leqslant k \leqslant l \leqslant m} F_{jklm}(\sin \bar{\rho}) \,\xi_j \,\xi_k \,\xi_l \,\xi_m + \dots;$$

in

$$\xi_k = 1 - \exp\left[-a(r_k - r_e)\right], \quad k = 1, 2, 3,$$
$$(\xi_{4a}, \xi_{4b}) = \left(\frac{1}{\sqrt{6}}[2\alpha_1 - \alpha_2 - \alpha_3], \frac{1}{\sqrt{2}}[\alpha_2 - \alpha_3]\right)$$

$$\sin\bar{\rho} = \frac{2}{\sqrt{3}}\sin[(\alpha_1 + \alpha_2 + \alpha_3)/6]$$

Dipole moment expansion:

(Symmetrized Molecular Bond (SMB) expansion)

Dipole moment expanded in terms of unit vectors **e**₁, **e**₂, **e**₃, **e**_N

$$\mathbf{e}_k = \frac{\mathbf{r}_k - \mathbf{r}_4}{|\mathbf{r}_k - \mathbf{r}_4|} \qquad \qquad \mathbf{e}_N = |\mathbf{q}_N / |\mathbf{q}_N| \\ \mathbf{q}_N = (\mathbf{e}_1 \times \mathbf{e}_2) + (\mathbf{e}_2 \times \mathbf{e}_3) + (\mathbf{e}_3 \times \mathbf{e}_1).$$

$$\begin{split} \bar{\mu}_{A_{2}^{\prime}}^{\text{SMB}} &= (\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{\text{N}}) \\ \bar{\mu}_{E_{a}^{\prime}}^{\text{SMB}} &= \frac{1}{\sqrt{6}} \left[2 \left(\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{1} \right) - \left(\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{2} \right) - \left(\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{3} \right) \right] \\ \bar{\mu}_{E_{b}^{\prime}}^{\text{SMB}} &= \frac{1}{\sqrt{2}} \left[\left(\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{2} \right) - \left(\bar{\boldsymbol{\mu}} \cdot \mathbf{e}_{3} \right) \right], \\ \bar{\mu}_{\Gamma}^{\text{SMB}}(\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4a}, \chi_{4b}; \rho) = \mu_{0}^{\Gamma}(\sin \bar{\rho}) + \sum_{i} \mu_{i}^{\Gamma}(\sin \bar{\rho}) \chi_{i} + \sum_{i \leq j} \mu_{ij}^{\Gamma}(\sin \bar{\rho}) \chi_{i} \chi_{j} \\ &+ \sum_{i \leq j \leq k} \mu_{ijk}^{\Gamma}(\sin \bar{\rho}) \chi_{i} \chi_{j} \chi_{k} + \sum_{i \leq j \leq k \leq l} \mu_{ijkl}^{\Gamma}(\sin \bar{\rho}) \chi_{i} \chi_{j} \chi_{k} \chi_{l}, \end{split}$$

Dipole moment fitting:

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Simulated spectra for CH₃:

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Simulated spectra for CH₃:

Vibrational term values for CH₃:

Г	State	Ref.	$Obs.^a$	$P_{\rm max} = 24^b$	$P_{\rm max} = 32^c$	Г	State	Ref.	$Obs.^a$	$P_{\rm max} = 24^b$	$P_{\rm max} = 32^c$
A'_1	$2\nu_2$	61	1288.1	1279.77	1281.24	A_2''	ν_2	13	606.453	602.43	602.43
	$2\nu_4$			2737.63	2739.64	-	$3\nu_2$			2010.09	2010.09
	$4\nu_2$			2773.65	2776.86		$\nu_2 + 2\nu_4^0$			3372.27	3371.59
	$ u_1 $	13	3004.42	3002.71	3002.76		$5\nu_2$			3569.96	3569.95
	$3\nu_{4}^{3}$			4118.59	4120.58		$\nu_1 + \nu_2$			3596.35	3596.30
	$\nu_1 + 2\nu_2$			4258.97	4260.53		$3\nu_4^3$			4768.70	4767.06
	$6\nu_2$			4391.99	4397.00		$\nu_{2}^{4} + 2\nu_{4}^{0}$			4823.32	4822.79
	$\nu_3^1+\nu_4^1$			4537.94	4538.93		$\nu_1 + 3\nu_2$			4981.58	4981.52
	$4\nu_4$			5371.39	5364.56	E''	$\nu_2 + \nu_1^1$			2000.24	2002.22
	$2\nu_2 + 3\nu_4^3$			5475.84	5480.07	1	$\nu_2 + \nu_4 = 2\nu_4^2$			3388.24	3391.11
	$4\nu_2 + 2\nu_4$			5601.91	5607.20		$3\nu_{0} + \nu_{1}^{1}$			3426.45	3430.06
E'	ν_4^1	62	1397.0	1385.99	1387.26		$\nu_2 + \nu_4^1$			3736.40	3736.97
	$2\nu_2 + \nu_4^1$			2688.80	2691.61		$\nu_2 + \nu_3 + 3\nu^1$			4726.62	4728 62
	$2\nu_4^2$			2759.77	2762.05		$\nu_2 + 3\nu_4$ $3\nu_4 \pm 2\nu^2$			4835.22	4830.85
	ν_3^1	58	3160.8	3158.88	3158.83		$3\nu_2 + 2\nu_4$			4090.22	4092.16
	$3\nu_{4}^{1}$			4074.69	4075.46		$\nu_1 + \nu_2 + \nu_4$			4900.92	4903.10
	$2\nu_2 + 2\nu_4^2$			4087.92	4091.72						

Comparison between experimental emission spectrum and simulations for CH₃.

 CH_3 radicals produced by dissociation of CH_3 I

Contributions from υ₂ and hot bands only in vibrational simulations

Experimental spectrum reproduced from Hermann, H. W.; Leone, S. R. The Journal of Chemical Physics 1982, 76, 4759-4765, with the permission of AIP Publishing.

Thank you for your attention!

A. Y. Adam, A. Yachmenev, S. N. Yurchenko, and Per Jensen: A variationally computed IR line list for the methyl radical CH₃, *J. Phys. Chem. A* **123**, 4755-4763 (2019). **DOI:** *10.1021/acs.jpca.9b02919*