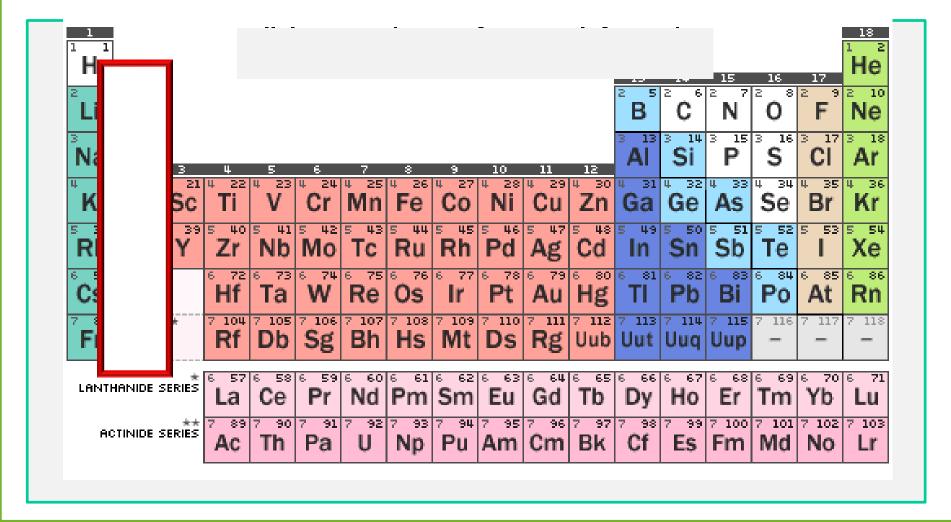

The general scheme of things

Potential energy surface(s)
Dipole moment surface(s) ...


in general obtained from ab initio calculations

PROGRAMS *MORBID*, RENNER, DR, TROVE

Group 2 alkaline-earth M₂O hyper-metallic oxides

Time evolution of the project

2010	ВеОВе	B. Ostojić, P. Jensen, P. Schwerdtfeger, B. Assadollahzadeh, and P. R. Bunker, <i>J. Mol. Spectrosc.</i> 263 , 21-26 (2010)
2011	MgOMg	B. Ostojić, P. R. Bunker, P. Schwerdtfeger, B. Assadollahzadeh, and P. Jensen, <i>Phys. Chem. Chem. Phys.</i> 13 , 7546–7553 (2011).
2012	CaOCa	B. Ostojić, P. R. Bunker, P. Schwerdtfeger, A. Gertych, and P. Jensen:, <i>J. Mol. Structure, in press.</i>
Near future	SrOSr	
Not- so- near future	ВаОВа	
Rather distant future	RaORa	
Some time	Maybe another column of the periodic table?	

Motivation

- Study of molecular clusters as a way of understanding the emergence of crystalline properties from molecular properties.
- Elucidation of the stability and structure of metal-rich clusters impacts on the development of new catalytic materials.

General observation

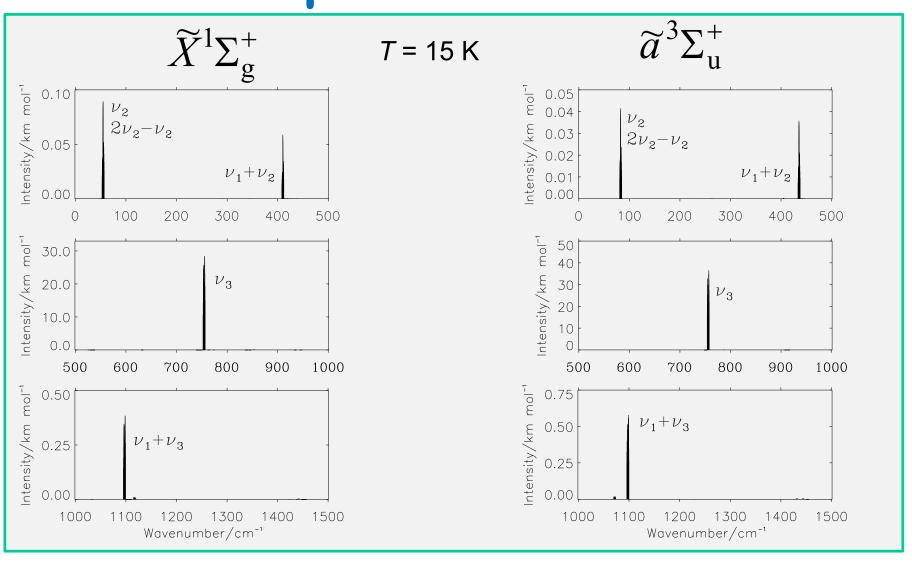
The molecules BeOBe, MgOMg, and CaOCa studied *ab initio* thus far all have $\widetilde{X}^1\Sigma_g^+$ electronic ground states and lowlying $\widetilde{\alpha}^3\Sigma_n^+$ electronic states.

 $T_{\rm e}(\widetilde{a}^3\Sigma_{\rm u}^+)$

Molecule	$T_{\rm e}(\widetilde{a}^{3}\Sigma_{u}^{+})/{\rm cm}^{-1}$
BeOBe	293
MgOMg	671
CaOCa	386

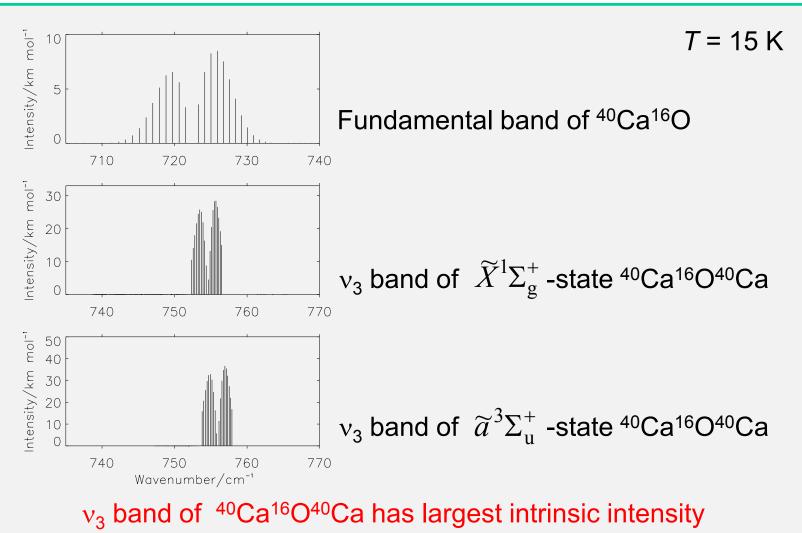
CaOCa ab initio calculation

- ➤ Calculation of three-dimensional potential energy surface, and the electric dipole moment surfaces.
- Multireference configuration interaction (MRCISD) approach in combination with internally contracted multireference perturbation theory (RS2C) based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pwCVQZ-DK basis set for Ca and a cc-pCVQZ basis set for O.



Vibrational energies and **B** values for 40Ca¹⁶O⁴⁰Ca calculated by MORBID

		\tilde{X}^{1}	E _g +	$\tilde{a}^{3}\Sigma$	C <u>+</u>
$(v_1, v_2^{\ell_2}, v_3)$	$N_{ m min}$	$G_{ m vib}$	$B_{ m eff}$	$G_{ m vib}$	$B_{ m eff}$
$(0,0^0, 0)$	0	0.00^{a}	0.0534	0.00^{b}	0.0530
$(0,1^{1e},0)$	1	54.84	0.0538	82.71	0.0533
$(0,1^{1f}, 0)$	1	54.84	0.0539	82.71	0.0533
$(0,2^0,0)$	0	106.74	0.0545	163.73	0.0537
$(0, 2^{2e,f}, 0)$	2	110.06	0.0545	166.39	0.0536
$(0,3^{1e}, 0)$	1	158.30	0.0549	244.22	0.0539
$(0,3^{1f},\ 0)$	1	158.30	0.0552	244.22	0.0540
$(0, 3^{3e,f}, 0)$	3	165.52	0.0550	250.96	0.0540
$(0,4^0,0)$	0	207.87	0.0557	324.59	0.0542
$(0,4^{2e,f},0)$	2	210.74	0.0556	327.01	0.0543
$(0,4^{4e,f},0)$	4	221.18	0.0556	336.49	0.0543
$(1,0^0, 0)$	0	345.39	0.0533	344.54	0.0530
$(1,1^{1e}, 0)$	1	410.29	0.0536	435.59	0.0531
$(1,1^{1f}, 0)$	1	410.29	0.0537	435.59	0.0532
$(1,2^0,0)$	0	468.85	0.0543	520.38	0.0535
$(1, 2^{2e,f}, 0)$	2	474.08	0.0542	525.73	0.0535
$(0,0^0, 1)$	0	754.58	0.0531	755.92	0.0527
$(0,1^{1e}, 1)$	1	804.45	0.0536	834.68	0.0530
$(0,1^{1f},1)$	1	804.45	0.0537	834.68	0.0530
$(0,2^0,1)$	0	852.91	0.0543	914.71	0.0534
$(0, 2^{2e,f}, 1)$	2	855.49	0.0543	915.89	0.0533


BERGISCHE UNIVERSITÄT WUPPERTAL

Simulated spectra of ⁴⁰Ca¹⁶O⁴⁰Ca

BERGISCHE UNIVERSITÄT WUPPERTAL

Comparison with ⁴⁰Ca¹⁶O-spectrum

Experiment?

JOURNAL OF MOLECULAR SPECTROSCOPY 68, 114-121 (1977)

Infrared Spectra of Matrix-Isolated Calcium-44 Substituted Oxides

LESTER ANDREWS¹ AND BRUCE S. AULT²

Chemistry Department, University of Virginia, Charlottesville, Virginia 22901

The products of ⁴⁴Ca atom reactions with ozone and oxygen have been isolated in solid nitrogen at 15 K. An excellent wavenumber fit for four isotopic molecules confirms the diatomic CaO assignment. Calcium and oxygen isotopic data strongly support the observation of rhombic (CaO)₂ and isosceles triangular CaO₂ and Ca₂O species.

Experiment!

Spectra resulting from reactions of 44 Ca with 16 O₃, and of 40 Ca with 16 O₃ and with 18 O₃.

The infrared spectra of the reaction products, in the 15 K nitrogen matrix, were recorded in the 400–800 cm⁻¹ region.

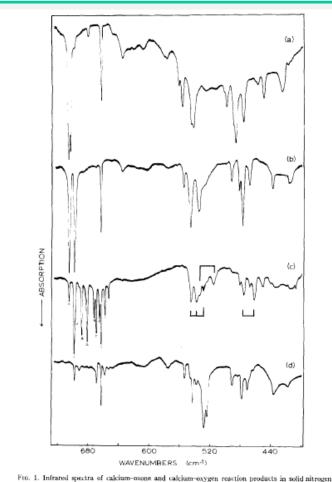
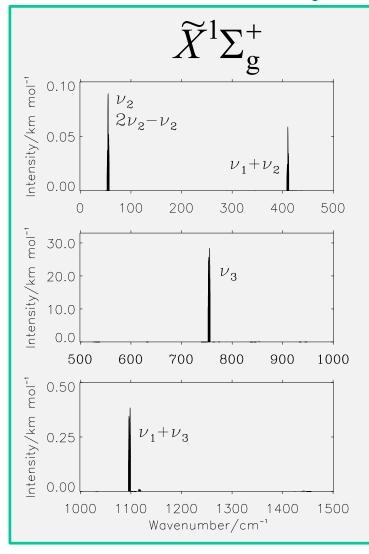


Fig. 1. Infrared spectra of calcium—ozone and calcium—oxygen reaction products in solid nitrogen at 15 K. Spectrum (a) natural **Ca and N₂/**Θ₂ = 130/1, Spectrum (c) **Ca and N₃/**Θ₂ = 140/1, Spectrum (c) **Ca and N₃/***Θ₂ = 150/1, SP₂ **Go enciclement. Trace (d) **Ca and N₃/***Θ₂ = 150/1, SP₂ **Go, int.


Experiment!

Strong peaks attributed to CaOCa by Andrews and Ault:

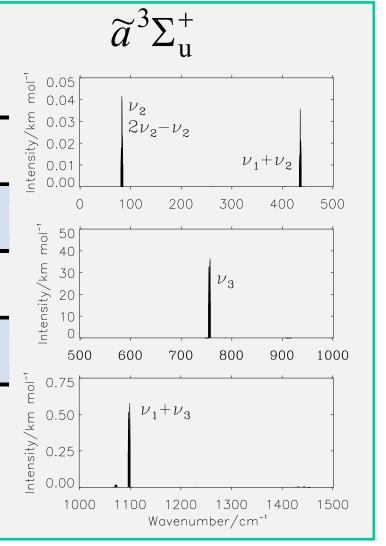
Molecule	Peak wave- numbers/cm ⁻¹	
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8	
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472	
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477	

Simulated spectra of ⁴⁰Ca¹⁶O⁴⁰Ca

T = 15 K

Molecule	Peak wave- numbers/cm ⁻¹		
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8		
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472		
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477		

No reasonable assignment possible!



Simulated spectra of 40Ca16O40Ca

$$T = 15 \text{ K}$$

Molecule	Peak wave- numbers/cm ⁻¹
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477

No reasonable assignment possible!

Conclusion:

- ➤ The spectra observed by Andrews and Ault are not due to CaOCa.
- We hope that our calculations will assist in the eventual spectroscopic characterization of CaOCa.