Physical Symposium Wuppertal

Chirped Pulse Microwave Spectrometer

Pascal Stahl

December 2016

Laborastrophysik

Universität Kassel

Introduction

Universität Kassel

Chirps

 Signals with rising or falling frequency (up/down-chirps)

 Consider linear chirps with instantaneous frequency

$$f_{inst}(t) = f_0 + \alpha \cdot t$$

• sweep rate $\alpha = \frac{bandwidth}{pulse\ duration}$

 \rightarrow induce molecular transitions by sweeping through the frequency

Motivation

• Absorption or emission spectroscopy of molecules of astrophysical and astrochemical relevance e.g.

• Fast and broadband scanning with sweep rates up to $\alpha \approx 100 \frac{{
m GHz}}{{
m s}}$

• Detection of several molecular transitions with one chirp

• Same molecule production conditions for one chirp when using supersonic jets and laser ablation techniques

[HNW] T. Hirano, U. Nagashima, G. Winnewisser, P. Jensen, *Electronic structures and rovibronically averaged geometries of the X⁶A_i* and A⁶A_i["] states of FeOH, The Journal of Chemical Physics, 132, 094303 (2010) [HBJ] T. Hirano, P.R. Bunker et al., *The predicted spectrum of FeOH in its Renner-degenerate* X⁶A_i and A⁶A_i["] A electronic states, Journal of Molecular Spectroscopy, 256, 2009, 45-52

Contents

• Microwave Components

• Experimental Setup

• Measurements

• Summary and Outlook

Twin-channel Arbitrary Waveform Generator (AWG)

- Generation of arbitrary signals by sampling stored waveforms \rightarrow chirps
- 400 MSamples/s sample rate
- 145 MHz analog bandwidth \rightarrow chirp bandwidth

VDI Synthesizer

- output frequency between 8 GHz and 20 GHz
- output power 16 dBm 20 dBm

[V0] VDI S0037 und VDI S0051 Users Guide, Virginia Diodes, Inc. 2014

[V] http://www.vadiodes.com/en/products/frequency-synthesizer-and-frequency-counter

[N] http://www.ni.com/datasheet/pdf/en/ds-235

 \rightarrow Use synthesizer RF as carrier for the chirps

5

Summary and Outlook

I/Q-Modulator

- Mixing of the chirps (I/Q-waveform) with carrier signal
- Output signal: $cos(2\pi [f_{Chirp} + f_{Carrier}]t)$
- 2 26 GHz RF input and output
- DC 500 MHz IF-bandwidth

۲	۲	•
Q-Signal		® RF Input
RF Output	۲	•
I-Signal	8	

IQ-Modulator MITEQ-SM0226LC1MDQ [M]

Sig	nal detection	
Detector	WR-42	WR-8.0
Frequency range [GHz]	18.0-26.5	90-140
• Maacuramanta abaya		

Measurements above 140 GHz are available as well with a terahertz chain

WR42 Detektor [MR]

K-Band

W-Band

ightarrow Four acetonitrile transitions are detected between 91.96998 GHz and 91.98998 GHz

Ammonia measurements (15 % in He)

[JPL] NASA - JPL Molecular Spectroscopy - CALTECH (California Institute of Technology), JPL Molecular Spectroscopy Database - Catalog Browser Form, http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

Outlook

• Optimization of experimental setup and techniques concerning power, bandwidth and measurement time

• Use of faster nozzles in order to obtain shorter pulses and therefore reduce measurement time

• Use of a discharge nozzle to produce astrophysical and astrochemical interesting molecules

• Measurement of HCN, HNC, FeOH, CH₃CN, ...

• Extension of the setup to emission spectroscopy with acquisition of molecular FID signals

Summary

• Design layout of a chirped pulse microwave spectrometer

• Fast and broadband investigation of molecular transitions

- Using the spectrometer in combination with supersonic jets
 - \rightarrow improved investigation of rotational and inversion transitions

• Investigation of ammonia, acetonitrile and nitrous oxide via chirp jet measurements

Thank you for your attention !

Laborastrophysik

Universität Kassel