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Rovibrational motion in cold molecules: 
Example: dimethyl ether

Motion in cold molecules

- Born-Oppenheimer approximation
(Electronic ground state)

- Overall rotations
- Small amplitude vibrations
- Large amplitude vibrations

(e.g., internal rotations)   

Starting point for theoretical description:
Separate treatment of the different motions

 𝐻full =  𝐻rot +  𝐻LAV +  𝐻SAV

|  𝜓full = |  𝜓rot |  𝜓LAV |  𝜓SAV
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Beyond rotation-vibration separation:
Extremely flexible protonated methane

“I anticipate that this enfant terrible will be caught in interstellar space far ahead of its 
theoretical understanding which will take at least a few more decades.“  [1]

[1] Oka, T.; Science 347, 1313 (2015); Animation: http://www.theochem.ruhr-uni-bochum.de/go/ch5p.html (D. Marx)
[2] Schmiedt, H., et al. ; J. Chem. Phys. 143, 154302 (2015)

Motion in CH5
+

- Five protons but four bonds
- No well-defined, static equilibrium

geometry
- Internal rotations & flips

Rotation and vibration inseparable [2]

First observation: Free internal rotation angle and axis!
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 𝐻full =  𝐻rot +  𝐻LAV +  𝐻SAV

|  𝜓full = |  𝜓rot |  𝜓LAV |  𝜓SAV
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Free internal rotation axis and angle: 
The potential energy surface

• 120 equivalent minima
• Zero point energy comparable to all barriers!

Our starting point: Completely flat potential

[3] Structures and barriers from: Bunker, P.R., et al.; J. Mol. Struc. 695-696, (2003)

Sketch of the PES in two different coordinates [3]
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Pedagogical example for better 
understanding: Rigid methane

• Non-vibrating, static methane molecule = rigid spherical top

𝐸𝐽 = 𝐵 𝐽(𝐽 + 1)

• Hamiltonian:       𝐻 = 𝐵(  𝐽𝑥
2 +  𝐽𝑦

2 +  𝐽𝑧
2)

• Full rotational symmetry: Group 𝑲(mol), isomorphic to SO(3)

• Irreducible representations 𝐷𝐽, 𝐽 = 0, 1, 2, 3, 4, … .

• Vibrating, actually existing methane molecule 

• Molecular symmetry group 𝑻d(M) ⊂ SO(3)

𝐸4

Labeled by 
irreducible 
representations of 
𝑻d(M) ⊂ SO(3)

𝐴1

𝐸
𝐹1

𝐹2

P. R. Bunker and P. Jensen: Spherical Top Molecules and the Molecular Symmetry Group, Mol. Phys. 97, 255-264 (1999).
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Permutation/inversion symmetry in protonated
methane

Five identical particles: Symmetry group 𝑮240 = 𝑺5 × 𝐸, 𝐸∗

𝑺5=(E),(12),(123),(1234),(12345),… 

• Molecular states labelled by 𝑺5 - labels (Fermi-Dirac-allowed: 𝐴2, 𝐺2, 𝐻2)
• What is the permutation symmetry of the generalized rotational states?

• 𝑺5 is “isomorphic” to subgroup of SO(5)
Permutations can be “translated” to 5d-rotations

• Non-zero potential = Splitting
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𝐸[2,0]

Pedagogical example continued: 
Protonated methane simplified
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• Protonated methane with two “soft” vibrations

• 5D rotational symmetry: Group SO(5)

• Irreducible representations [𝑛1, 𝑛2],    𝑛1 ≥ 𝑛2 = 0, 1, 2, 3, 4, … .

• Fully vibrating, actually existing protonated methane molecule 

• Molecular symmetry group 𝑮240 ⊂ SO(5)
Labeled by 
irreducible 
representations of 
𝑮240 ⊂ SO(5)

• Now five-dimensional rotor [4]:     𝐻 =
𝐵

2
 𝑎<𝑏

 𝐽𝑎𝑏
2

𝐸[𝑛1,𝑛2] =
𝐵

2
𝑛1 𝑛1 + 3 + 𝑛2(𝑛2 + 1)

[4] e.g.. Racah, G.; Phys Rev. 76, 1352, (1949)
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Electric dipole moment selection rules in SO(5)

([𝑛1
′ , 𝑛2

′ ] ⨂ [𝑛1, 𝑛2]) ↓ 𝑺5 ⊃ 𝐴1

• Space-fixed components of dipole moment has symmetry 
𝐴1in 𝑺5

• Assumption: In SO(5) there are contributions from all [𝑛1, 𝑛2] 
that image onto 𝐴1by forward correlation

Γ𝜇 = [3,1] ⊕ [3,3] ⊕ [4,2] ⊕ [4,3] ⊕ …
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Molecular super-rotor: 
Algebraic theory re-invented
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Developed theory has great similarity to the algebraic theory by 
Iachello and co-workers*,**

New element is the use of the near-symmetry group SO(5) as 
starting point

*F. Iachello, Algebraic methods for molecular rotation-vibration spectra, Chem.
Phys. Lett. 78, 581–585 (1981).
**F. Iachello, R.D. Levine, Algebraic theory of molecules, in: Topics in Physical
Chemistry, Oxford University Press, 1995.
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Rovibrational energies of CH5
+ from

experiment: Combination differences

Ground vibrational levels

Excited vibrational levels

• Scan rovibrational transitions (infrared)
• Construct the differences of all transitions (Combination differences = CoDiffs)
• If two transitions share upper level, this CoDiff occurs regularly (many upper states!)

Differences rebuild ground state energy levels [6]

[6] Asvany, O. et al.; Science, 347, 1346 (2015)
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Direct comparison of theory and experiment

Energy

Dashed arrows are experimental GS combination differences

First assignment of any of these experimental data 
consistent in energy and symmetry!

[cm-1]
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Comparison to experiment II

• Remember: SO(5) theory is zero-order approximation

There are many more lines in both experiment and theoretical prediction

• Expectation: Actual potential energy surface lifts the degeneracy of the

𝑆5 states

Even more lines

Numbers from: Asvany, O. et al.; Science, 347, 1346 (2015)
(*) And (**) have been identified in the CoDiff spectrum only recently
(Brackertz, S; Diploma thesis; University of Cologne; 2016)
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Comparison with
conventional QM 
calculations

X.-G. Wang, T. Carrington, Vibrational energy 
levels of CH5

+, J. Chem. Phys. 129
234102, (2008)

X.-G. Wang, T. Carrington, Calculated 
rotation-bending energy levels of CH5

+

and a comparison with experiment, J. Chem. 
Phys. 144, 204304 (2016).
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Outlook

Protonated methane

- Include potential energy surface in 5D-model
- Higher order effects (non-rigid, non-spherical,…)
- More measurements

General super-rotor theory

- Higher-order approximation (non-rigid super-rotor)
- Application to more molecules: Clusters, H5

+, …
- Explicit symmetry breaking – Link to hindered internal rotation 
- Comparison to other models
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Many thanks for your attention!


