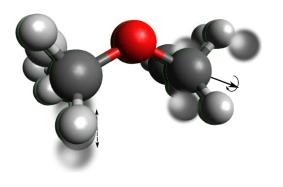

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

And now for something completely different...

Making headway in understanding the rotationvibration spectrum of protonated methane CH₅⁺ - an extremely flexible molecule

1

Per Jensen


School of Mathematics and Natural Sciences Physical and Theoretical Chemistry University of Wuppertal D-42097 Wuppertal Germany

> Tel. +49 (0) 202 - 439 2468 jensen@uni-wuppertal.de

(Picture courtesy of M. Python)

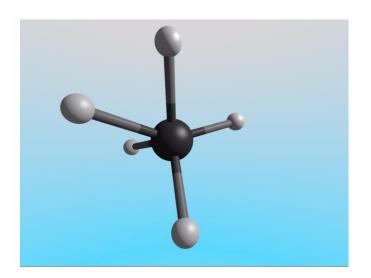
Rovibrational motion in cold molecules: Example: dimethyl ether

Motion in cold molecules

- Born-Oppenheimer approximation (Electronic ground state)
- Overall rotations
- Small amplitude vibrations
- Large amplitude vibrations (e.g., internal rotations)

Starting point for theoretical description: **Separate** treatment of the different motions

$$\begin{aligned} \widehat{H}_{\text{full}} &= \widehat{H}_{\text{rot}} + \ \widehat{H}_{\text{LAV}} + \widehat{H}_{\text{SAV}} \\ |\psi_{\text{full}}\rangle &= |\psi_{\text{rot}}\rangle |\psi_{\text{LAV}}\rangle |\psi_{\text{SAV}}\rangle \end{aligned}$$


2

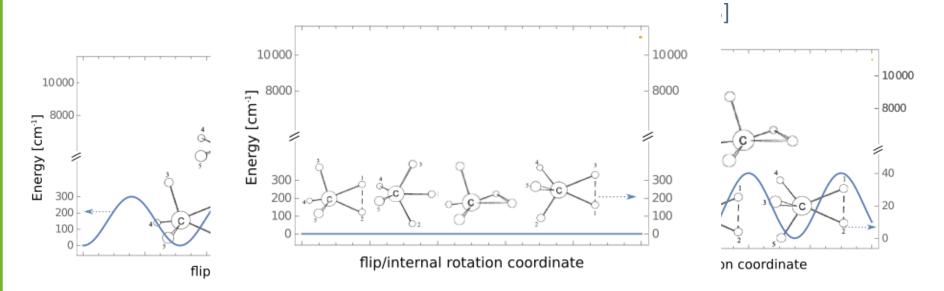
Beyond rotation-vibration separation: Extremely flexible protonated methane

3

"I anticipate that this enfant terrible will be caught in interstellar space far ahead of its theoretical understanding which will take at least a few more decades." [1]

Motion in CH₅⁺

- Five protons but four bonds
- No well-defined, static equilibrium geometry
- Internal rotations & flips
- ⇒ Rotation and vibration inseparable [2]


 $\hat{H}_{\text{full}} = \hat{H}_{\text{rot}} + \hat{H}_{\text{LAV}} + \hat{H}_{\text{SAV}}$ $|\psi_{\text{full}}\rangle = |\psi_{\text{rot}}\rangle |\psi_{\text{LAV}}\rangle |\psi_{\text{SAV}}\rangle$

First observation: Free internal rotation angle and axis!

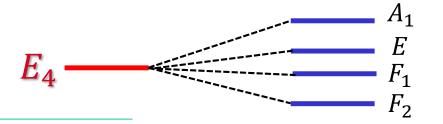
^[1] Oka, T.; Science 347, 1313 (2015); Animation: http://www.theochem.ruhr-uni-bochum.de/go/ch5p.html (D. Marx)
[2] Schmiedt, H., et al.; J. Chem. Phys. 143, 154302 (2015)

Free internal rotation axis and angle: The potential energy surface

- 120 equivalent minima
- Zero point energy comparable to all barriers!

Our starting point: Completely flat potential

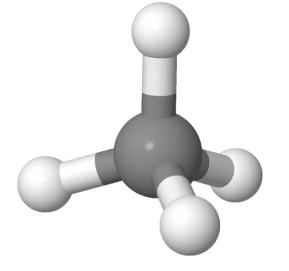
^[3] Structures and barriers from: Bunker, P.R., et al.; J. Mol. Struc. 695-696, (2003)



Pedagogical example for better understanding: Rigid methane

- Non-vibrating, static methane molecule = rigid spherical top
- Hamiltonian: $\widehat{H} = B(\widehat{J}_x^2 + \widehat{J}_y^2 + \widehat{J}_z^2)$
- Full rotational symmetry: Group *K*(mol), isomorphic to SO(3)
- Irreducible representations D_J , J = 0, 1, 2, 3, 4, ...

 $E_J = B J(J+1)$


- Vibrating, actually existing methane molecule
- Molecular symmetry group $T_d(M) \subset SO(3)$

5

Labeled by irreducible representations of $T_{d}(M) \subset SO(3)$

P. R. Bunker and P. Jensen: Spherical Top Molecules and the Molecular Symmetry Group, Mol. Phys. 97, 255-264 (1999).

Permutation/inversion symmetry in protonated methane

Five identical particles: Symmetry group $G_{240} = S_5 \times \{E, E^*\}$ $S_5=(E),(12),(123),(1234),(12345),...$

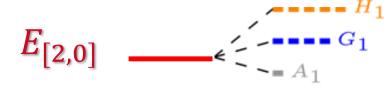
- Molecular states labelled by S_5 labels (Fermi-Dirac-allowed: A_2, G_2, H_2)
- What is the permutation symmetry of the generalized rotational states?
 - *S*₅ is "isomorphic" to subgroup of SO(5)
 Permutations can be "translated" to 5d-rotations
 - Non-zero potential = Splitting

	E1	(12) 10	(12)(34) 15	(123) 20	(12)(345) 20	(1234) 30	(12345) 24
$\begin{array}{c} A_1 : \\ A_2 : \\ G_1 : \\ G_2 : \\ H_1 : \\ H_2 : \\ I : \end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 2 \\ -2 \\ 1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -2 \\ \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \end{array} $

The character table of the group S_5

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Pedagogical example continued: Protonated methane simplified


7

- Protonated methane with two "soft" vibrations
- Now five-dimensional rotor [4]: $\hat{H} = \frac{B}{2} \sum_{a < b} \hat{J}_{ab}^2$
- 5D rotational symmetry: Group SO(5)
- Irreducible representations $[n_1, n_2], n_1 \ge n_2 = 0, 1, 2, 3, 4, ...$

e e

 $E_{[n_1,n_2]} = \frac{B}{2} \left\{ n_1(n_1+3) + n_2(n_2+1) \right\}$

- Fully vibrating, actually existing protonated methane molecule
- Molecular symmetry group $G_{240} \subset SO(5)$

[4] e.g.. Racah, G.; Phys Rev. 76, 1352, (1949)

Labeled by irreducible representations of $G_{240} \subset SO(5)$

Electric dipole moment selection rules in SO(5)

8

- Space-fixed components of dipole moment has symmetry A_1 in S_5
- Assumption: In SO(5) there are contributions from all [n₁, n₂] that image onto A₁ by forward correlation

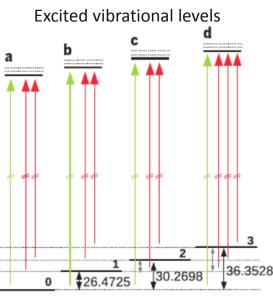
 $\Gamma_{\mu} = [3,1] \oplus [3,3] \oplus [4,2] \oplus [4,3] \oplus \dots$

 $([n_1',n_2'] \otimes [n_1,n_2]) \downarrow S_5 \supset A_1$

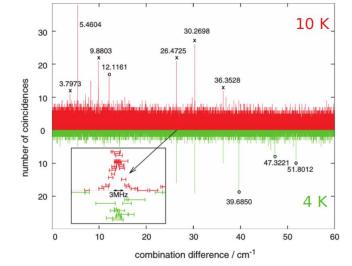
$\Gamma_{init}/\Gamma_{final}$	[0,0]	[1,0]	[1,1]	[2,0]	[2,1]	[2,2]
[0,0]	×	×	×	×	×	×
[1,0]	×	×	×	×	\checkmark	×
[1,1]	×	×	×	\checkmark	\checkmark	\checkmark
[2,0]	×	×	\checkmark	\checkmark	\checkmark	\checkmark
[2,1]	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
[2,2]	×	×	\checkmark	\checkmark	\checkmark	\checkmark

Molecular super-rotor: Algebraic theory re-invented

Developed theory has great similarity to the algebraic theory by lachello and co-workers^{*,**}

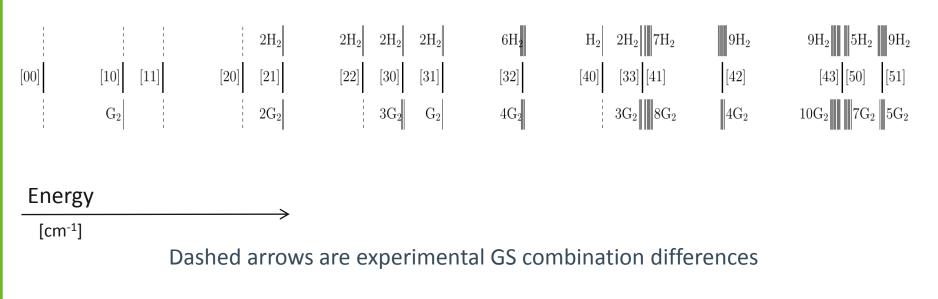

9

New element is the use of the near-symmetry group SO(5) as starting point


*F. Iachello, Algebraic methods for molecular rotation-vibration spectra, *Chem. Phys. Lett.* **78**, 581–585 (1981).
**F. Iachello, R.D. Levine, Algebraic theory of molecules, in: Topics in Physical Chemistry, Oxford University Press, 1995.

Rovibrational energies of CH₅⁺ from experiment: Combination differences

Ground vibrational levels


- Scan rovibrational transitions (infrared)
- Construct the differences of all transitions (Combination differences = CoDiffs)
- If two transitions share upper level, this CoDiff occurs regularly (many upper states!)
- ➡ Differences rebuild ground state energy levels [6]

[6] Asvany, O. et al.; Science, 347, 1346 (2015)

Direct comparison of theory and experiment

11

First assignment of any of these experimental data consistent in energy and symmetry!

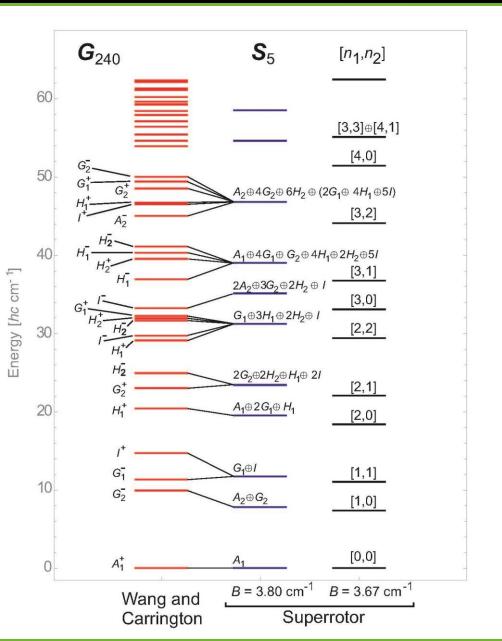
Comparison to experiment II

Symmetry	Exp. CoDiffs	Present work	Assignment
${old S}_5$	$[cm^{-1}]$	$[cm^{-1}]$	SO(5)
G_2	26.47252	25.71	[1,0] - [3,0]
	30.26984	29.38	[1,0] - [3,1]
	36.35280	36.73	[1,0] - [3,2]
H_2	39.68499	40.41	[2,1] - [4,2]
	47.32219	-	-
	51.80126	51.42	[2,1] - [4,3]([5,0])
	55.17916**	55.10	[2,1] - [5,1]
H_2	8.38325*	7.35	[2,2] - [3,1]
	21.52476*	22.04	[2,2] - [4,0]
	24.83280*	25.7124	[2,2] - [3,3]

- Remember: SO(5) theory is zero-order approximation
- There are many more lines in both experiment and theoretical prediction
- Expectation: Actual potential energy surface lifts the degeneracy of the

 S_5 states

Even more lines


Numbers from: Asvany, O. et al.; *Science*, **347**, 1346 (2015) (*) And (**) have been identified in the CoDiff spectrum only recently (Brackertz, S; Diploma thesis; University of Cologne; 2016) SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Comparison with conventional QM calculations

X.-G. Wang, T. Carrington, Vibrational energy levels of CH₅⁺, *J. Chem. Phys.* **129** 234102, (2008)

X.-G. Wang, T. Carrington, Calculated rotation-bending energy levels of CH₅⁺ and a comparison with experiment, *J. Chem. Phys.* **144**, 204304 (2016).

13

Outlook

General super-rotor theory

- Higher-order approximation (non-rigid super-rotor)
- Application to more molecules: Clusters, H_5^+ , ...
- Explicit symmetry breaking Link to hindered internal rotation

14

- Comparison to other models

Protonated methane

- Include potential energy surface in 5D-model
- Higher order effects (non-rigid, non-spherical,...)
- More measurements

Dramatis personæ

Hanno Schmiedt Principal doer

Ponderers (answer phone, pontificate...)

Stephan Schlemmer

Per Jensen

- H. Schmiedt, S. Schlemmer, and P. Jensen: Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation, *J. Chem. Phys.* **143**, 154302/1-8 (2015). **DOI:** *10.1063/1.4933001*
- H. Schmiedt, P. Jensen, and S. Schlemmer: Collective molecular superrotation: A model for extremely flexible molecules applied to protonated methane, *Phys. Rev. Lett.*, **117**, 223002/1-5 (2016). **DOI:** *10.1103/PhysRevLett.117.223002*
- H. Schmiedt, P. Jensen, and S. Schlemmer: Rotation-vibration motion of extremely flexible molecules The molecular superrotor, *Chem. Phys. Lett.* 672, 34–46 (2017). DOI: 10.1016/j.cplett.2017.01.045 "Frontiers article" prepared by invitation.
- H. Schmiedt, P. Jensen, and S. Schlemmer: The role of angular momentum in the superrotor theory for rovibrational motion of extremely flexible molecules, *J. Mol. Spectrosc., in press.* **DOI:** *10.1016/j.jms.2017.06.002*

15

Many thanks for your attention!