Theoretical Spectroscopy

Ahmad Adam Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

I heory Potential Energy Surface HFCC surface Vibrational Contribution to HFCC

Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

<u>Ahmad Adam¹</u>, Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

 ¹Fachbereich C-Physikalische und theoretische Chemie, Bergische Universitt Wuppertal,D-42097 Wuppertal, Germany
 ² Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

aadam@uni-wuppertal.de

June 19, 2014

Overview

Theoretical Spectroscopy

Introduction

2

Electronic Structure Calculations

- Equilibrium Geometry
- Theoretical Models and HECC
- Comparison to Experiment

Nuclear Motion 3

- Theory
- Potential Energy Surface
- HECC surface
- Vibrational Contribution to HFCC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Effect of Temperature

Summary and Conclusions 4

5 Acknowledgement

Introduction ESR Spectroscopy

Theoretical Spectroscopy

Ahmad Adam¹ Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC Comparison to

Comparison to Experiment

Nuclear Motion

I heory Potential Energ Surface HFCC surface Vibrational Contribution to HFCC

Effect of

- structure of radicals
- detection of radicals
- chemical kinetics
- chemistry, biology, and medicine

イロト 不得 トイヨト イヨト

3

Introduction

Simulated spectrum of CH₃ radical with hyperfine coupling constant a

Figure : Bovet, C.; Barron, A. EPR Spectroscopy: An Overview, OpenStax-CNX Web site. http//cnx.org/content/m22370/1.3/, May 23, 2009

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Electronic Structure Calculations Equilibrium Geometry

Theoretical Spectroscopy

<u>Ahmad Adam¹</u> Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculation

Equilibrium Geometry

I heoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory Potential Energ Surface HFCC surface Vibrational Contribution to

Bond distance

- CCSD(T)/aVTZ = 1.0762 Å
- CCSD(T)/aQTZ = 1.0759 Å
 - Experiment = 1.079 Å

Figure : from Principles of General Chemistry (v.1.0 M) by Bruce A. Averill

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Electronic Structure Calculations Theoretical Models and HFCC

Theoretical pectroscopy	Method/Basis Set	A ^{iso} _{eql} ,G
<u>lad Adam¹,</u> Jensen ¹ ,	UB3LYP/ERP-III	28.2
ndrey menev ² ,	CISD/DZ	25.7
Sergei chenko ²	CCSD(T)/Chipman	28.5
duction	B3LYP/Huz-IVu4s	30.1
onic	UB3LYP/EPR-III	28.6
ure	UB2PLYP/EPR-III	30.0
ium rv	00-RI-MP2/EPR-III	30.0
tical s and	00-SCS-RI-MP2/EPR-III	22.0
arison to iment	CCSD(T)/EPR-III	24.7
r		
on rv		

Table : 13 C isotropic HFCC in CH₃ (*Table data from Chen X, Rinkevicius Z, Ruud K, Ågren H., J. Chem. Phys. 2013, 138, 054310. See this paper for original references.*)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Electronic Structure Calculations Comparison to Experiment

Theoretical Spectroscopy		Method/Basis Set	A ^{iso} ,G			
hmad Adam ¹ ,						
Per Jensen ¹ ,		UB3LYP/ERP-III	28.2			
Yachmenev ² ,		CISD/DZ	25.7			
and Sergei Yurchenko ²		CCSD(T)/Chipman	28.5			
ntroduction		B3LYP/Huz-IVu4s	30.1			
lectronic		UB3LYP/EPR-III	28.6			
tructure			30.0			
Calculations			50.0			
Equilibrium Geometry		OO-RI-MP2/EPR-III	30.0			
Theoretical Models and		OO-SCS-RI-MP2/EPR-III	22.0			
Comparison to Experiment		CCSD(T)/EPR-III	24.7			
luclear		Experiment	38.3			
lotion						

Table : ${}^{13}C$ isotropic HFCC in CH₃ (*Table data from Chen X, Rinkevicius Z, Ruud K, Ågren H., J. Chem. Phys. 2013, 138, 054310. See this paper for original references.*)

Nuclear Motion Thermal Averaging

Theoretical Spectroscopy

Ahmad Adam Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory

Potential Energy Surface HFCC surface Vibrational Contribution to HFCC Effect of Theory

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

where ..

- P = operator
- T = absolute temperature
- Q = partition function
- $g_i = degeneracy$

Nuclear Motion Thermal Averaging

Theoretical Spectroscopy

Ahmad Adam Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory

Potential Energy Surface HFCC surface Vibrational Contribution to HFCC Theory

where ..

- P = operator
- T = absolute temperature
- Q = partition function
- $g_i = degeneracy$

$$E_{rv}^{(i)} = eigenvalues$$

 $\Phi_{rv}^{(i)} = eigenvectors$

イロト 不得 トイヨト イヨト

3

Nuclear Motion Thermal Averaging – more details

ELSEVIER

Journal of Molecular Spectroscopy 245 (2007) 126-140

www.elsevier.com/locate/jms

Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules

Sergei N. Yurchenko ^{a,*}, Walter Thiel ^b, Per Jensen ^c

^a Institut für Physikalische Chemie und Elektrochemie, TU Dresden, D-01062 Dresden, Germany ^b Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany ^c FB C-Mathematik und Naturwissenschaften, Enckgrappe Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany

> Received 18 May 2007; in revised form 12 July 2007 Available online 17 August 2007

THE JOURNAL OF CHEMICAL PHYSICS 132, 114305 (2010)

Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode

Andrey Yachmenev,¹ Sergei N. Yurchenko,² Ivana Paidarová,³ Per Jensen,⁴ Walter Thiel,¹ and Stephan P. A. Sauer^(A).
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
Physikalische Chemie, Technische Universität Dresden, Mommsenstr. 13, D-01062 Dresden, Germany
³J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ 182 23 Praha 8, Czech Republic
³Pachbereich C-Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany
³Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Demmark

Theoretical Spectroscopy

Ahmad Adam Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculation Equilibrium Geometry Theoretical Models and

Comparison to Experiment

Nuclear Motion

Theory

Vibrational Contribution to HFCC Surface Vibrational Contribution to HFCC Effect of

Nuclear Motion Potential Energy and HFCC Surfaces

Theoretical Spectroscopy

Ahmad Adam¹ Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

- Electronic Structure Calculations Equilibrium Geometry Theoretical Models and
- Comparison to Experiment
- Nuclear Motion
- Theory

Potential Energy Surface

- HFCC surface
- Vibrational Contribution to HFCC
- Effect of

- 2625 unique symmetry points near equilibrium geometry
 - UHF-CCSD(T)/aug-cc-pVTZ for Potential Energy Surface

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- UHF-CCSD(T)/EPR-III for HFCC surface
- Least squares fitting

Nuclear Motion Vibrational Contribution to HFCC

The	oretical	
Spect	troscopy	1

Ahmad Adam ¹
and Sergei

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory Potential Energy Surface

HFCC surface

Vibrational Contribution to HFCC

Effect of

Method/Basis Set	\mathbf{A}_{eql}^{iso} (G)	A ^{iso} vib (G)	$\Delta \mathbf{A}_{vib}^{iso}$ (G)	Тетр. (К)
B3LYP/Huz-IIIsu3	29.9	42.2	12.3 (41%)	0
P(CI)/DZ	22.2	35.1	12.9 (58%)	96
MCSCF/cc-pVTZus2st	27.7	37.3	9.6 (35%)	0
CCSD(T)/EPR-III	24.7	36.49	11.8 (48%)	0
CCSD(T)/EPR-III	24.7	36.51	11.8 (48%)	96
Experiment	_	38.3	-	96

Table : ${}^{13}C$ isotropic HFCC in CH₃ (*Table data from Chen X, Rinkevicius Z, Ruud K, Ågren H., J. Chem. Phys. 2013, 138, 054310. See this paper for original references.*) Our work is in blue color

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Nuclear Motion Effect of Temperature

Theoretical Spectroscopy

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory Potential Energy Surface HFCC surface Vibrational

HFCC

Method/Basis Set	$\begin{array}{c} \mathbf{A}_{eql}^{iso} \\ (G) \end{array}$	$\begin{array}{c} \mathbf{A}_{vib}^{iso} \\ (G) \end{array}$	$\Delta \mathbf{A}_{vib}^{iso}$ (G)	Тетр. (К)
B3LYP/Huz-IIIsu3	29.9	42.2	12.3 (41%)	0
P(CI)/DZ	22.2	35.1	12.9 (58%)	96
MCSCF/cc-pVTZus2st	27.7	37.3	9.6 (35%)	0
CCSD(T)/EPR-III	24.7	36.49	11.8 (48%)	0
CCSD(T)/EPR-III	24.7	36.51	11.8 (48%)	96
Experiment	_	38.3	-	96
CCSD(T)/EPR-III	24.7	37.53	12.8 (52%)	300

Table : ${}^{13}C$ isotropic HFCC in CH₃ (*Table data from Chen X, Rinkevicius Z, Ruud K, Ågren H., J. Chem. Phys. 2013, 138, 054310. See this paper for original references.*) Our work is in blue color

Summary and Conclusions

Theoretical Spectroscopy

Ahmad Adam¹ Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HECC

Comparison to Experiment

Nuclear Motion

Theory Potential Energy Surface HFCC surface Vibrational Contribution to HFCC

- Vibrational effects cannot be ignored in the case of ¹³C isotropic HFCC for CH₃
 - Compared to other averaging methods, our averaging included the rotational motion and coupling between vibrational modes
 - With temperature effects, the ro-vibrational contribution will exceed the electronic contribution

Acknowledgment

Theoretical Spectroscopy

Ahmad Adam¹ Per Jensen¹, Andrey Yachmenev², and Sergei Yurchenko²

Introduction

Electronic Structure Calculations Equilibrium Geometry Theoretical Models and HFCC

Comparison to Experiment

Nuclear Motion

Theory Potential Energ Surface HFCC surface Vibrational Contribution to

Effect of

Thanks to ..

- Andrey Yachmenev (UCL) for many helpful discussions
- Sergei Yurchenko (UCL) and Per Jensen (BUW)
- Financial support by DFG Deutsche
 - Forschungsgemeinschaft

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ