WH07

Computational Molecular Spectroscopy of FeCN in the $^{6}\Delta$ Electronic Ground State

AIST, Ochanomizu Univ.,* and Wuppertal Univ. (Germany)[†]

T. Hirano, R. Okuda, U. Nagashima, M. Amano,* Y. Mitsui,* S.S. Itono,* and Per Jensen[†]

Experimental spectroscopy --- Laser, Microwave, ...

Computational spectroscopy --- *Ab Initio* methods, based on the potential energy surface (PES)

	Exp. Spectroscopy	Comp. Spectroscopy
Starting point	Spectral Lines	Ab Initio PES
Strong points	Accurate <i>B</i> ₀ Elect. Excited states 	Electronic states Force constants (Renner constant) Unperturbed Spin-splitting Large Amplitude Bending Motion

Our Strategy in Computational Molecular Spectroscopy

 Three-dimensional potential energy surface by the *ab initio* MO method: MR-SDCI + Q + E_{rel}

2) Fit the potential to an analytical potential function

3) The 2nd-order **perturbation** treatment

4) Variational calculations with MORBID or RENNER

- FeNC: Hirano et al., J. Mol. Spectrosc., 236, 234 (2006)
- CoCN: Hirano *et al.*, Mol. Phys., **105**, 599 (2007)
- CoH: Tomonari et al., *J. Chem. Phys.*, **144**, 144307 (2007); WH08

Large Amplitude Bending Motion

Too-short experimental r_0 (C-N)

Ionic Cyanides and Isocyanide with a heavy atom

FeNC CoCN NiCN BrCN⁺ CrCN

. . .

Exp. (MW) Sheridan and Ziurys (2004) Exp. (LIF) Lie & Dagdian (2001) $B_0(^{3}\Phi_4) = 4208.827(23)$ MHz $B_0 = 0.1452 (2) \text{ cm}^{-1}$ $B_0(^{6}\Delta_{9/2}) = 0.14447(13) \text{ cm}^{-1}$ 2.01(5) Å <u>1.03(8) Å</u> 1.88270 Å <u>1.13133 Å</u> Fe ----- N ----- C Co ----- C ----- N Calc. 1.935 Å <u>1.182 Å</u> r_e Calc. 1.854 Å <u>1.168 Å</u> r_ $B_{\rm e}$ = 0.14250 cm⁻¹, $B_{\rm 0}$ = 0.14278 cm⁻¹ *B*_e= 4210 MHz Exp. (LIF) Kingston, Merer, Varberg (2002) NiCN However, $B_0(^2\Delta_{5/2}) = 0.1444334(30) \text{ cm}^{-1}$ difference in B_0 is small: (MW) Sheridan, Ziurys (2003) FeNC_{calc} -1.2 % $B_0(^2\Delta_{5/2}) = 0.14443515(5) \text{ cm}^{-1}$ NiCN_{calc} 1.1 % LIF 1.8292(28) Å <u>1.1591(29) Å</u> $r_0(^{2}\Delta_{5/2})$ DeYonker, et al. (2004, JCP) 1.8293(1) Å <u>1.1590(1) Å</u> MW $r_0(^{2}\Delta_{5/2})$ (MR-SDCI+Q) Ni ----- C ----- N $r_{\rm e}({\rm Fe-N}) = 1.940 \,{\rm \AA}$ $r_{o}(\text{C-N}) = 1.182 \text{ Å}$ 1.811 Å <u>1.166 Å</u> Calc. ۲_P $\rightarrow B_{e} = 0.1420 \text{ cm}^{-1}$ $B_{\rm e} = 0.14590 \ {\rm cm}^{-1}, \ B_0(^2\Delta_{5/2}) = 0.14595 \ {\rm cm}^{-1}$

CoCN

				Our Calc	. level:	
C-N Bond len	gth / Å			FeNC	, CoCN, an	nd NiCN
	FeNC	CoCN	NiCN	r	MR-SDCI+0	Q + E _{rel}
Obs. (r ₀)	1.03(8)	1.131	1.159	<i>cf</i> . Exp. <i>r</i> ₀ (NC):	1.15 – 1.1	19 Å
Calc. (r _e)	1.182	1.168	1.166		AINC 1	.171 Å
Difference/Å	-0.15	-0.037	-0.007		CN 1	.172 A

• Ionicity (Metal-Ligand) can be estimated from the C-N bond length:

M^{δ+} − (CN)^{δ-}

The transferred electron goes into $\sigma^*(CN)$ orbital \rightarrow weaken the CN bond. (*i.e.* lengthen the CN bond).

Hence, the iconicity of the Metal-Ligand bond should be in this order,

Fe-NC > Co-CN > Ni-CN (from *ab initio* r_e)

 And, hence, floppiness in bending motion should be Fe-NC > Co-CN > Ni-CN ,

since the more ionic, the more floppy.

Details of MO Calculations

Wavefunction

- Construction of MCSCF guess by merging Fe⁺ (⁶D) and CN⁻ (¹ Σ) MCSCF orbitals
- Multi-Reference Single and Double Configuration Interaction (MR-SDCI)
- -- Davidson's type corrections were added to the MR-SDCI calculation (denoted as +Q).
- The relativistic corrections (E_{rel}) have been included using the Cowan-Griffin approach by computing expectation values of the mass-velocity and one-electron Darwin terms.

Active space

- 3s, 3p, 3d and 4s shells of Fe, and 2s and 2p shells of CN

• Program

- MOLPRO 2002

Molecular constants of ⁶∆_i FeCN and FeNC MR-SDCI+Q+Erel/[Roos ANO(Fe), aug-cc-pVQZ(C,N)]

	FeCN	Fe	NC
	Calc.	Calc.	Exp. (Lie & Dagdigian)
r _e (Fe-N, Fe-C)) //	Å 2.0484	1.9354	$2.01 \pm 0.05 (r_0)$
<i>r</i> _e (N-C) /Å	1.1681	1.1823	1.03 ± 0.08 (r_0)
a _e (Fe-C-N, Fe-N-	C)/deg 180.0	180.0	180.0
B _e /cm⁻¹	0.1239	0.14250	
B _e /MHz	3714.0	4272.2	
B _{0.Ω=9/2} /cm ⁻¹	0.12380	0.14276 (-1.2	2%) 0.14447(13)
$E_{\rm e}/E_{\rm h}$	<u>-1364.19<mark>51</mark>508</u>	-1364.19 <mark>41</mark> 73	5
D _J /MHz	0.00123	0.00145	
<i>D</i> _J * 10 ⁸ /cm ⁻¹	4.12	4.83	
α_1 /cm ⁻¹	0.00055	0.00055	
α ₂ / cm -1	-0.00091	-0.00147	
α_3^{-} /cm ⁻¹	0.00053	0.00061	
<i>ω</i> ₁ /cm ⁻¹	2179	2090	
ω_2/cm^{-1}	173	109	
	420	476	464.1 ± 4.2
-			

Continued ...

	FeCN	FeNC ⁴⁾		
	Calc.	Calc.	Exp (Lie & Dagdigian)	
<i>∞</i> _e <i>x</i> _e (11)/cm ⁻¹	-12.2	-11.8		
<i>∞</i> _e x _e (22)/cm ⁻¹	-5.9	-4.0		
$\omega_{\rm e} \mathbf{x}_{\rm e}$ (33)/cm ⁻¹	-1.6	-3.7		
<i>∞</i> _e x _e (12)/cm⁻¹	-3.5	-4.9		
$\omega_{\rm e} x_{\rm e}$ (13)/cm ⁻¹	-1.4	-3.7		
$\omega_{\rm e} \mathbf{x}_{\rm e}$ (23)/cm ⁻¹	22.4	8.6		
<i>g</i> ₂₂ /cm ⁻¹	5.7	2.7		
v ₁ /cm ⁻¹	2150	2060		
v ₂ /cm ⁻¹	170	102		
v ₃ /cm ⁻¹	438	475	468	
Zero-Point E./cm ⁻¹	1472	1385		
ζ ₁₂ /cm ⁻¹	-0.98	-0.97		
ζ ₂₃ /cm ⁻¹	-0.22	-0.24		
Λ -doubling/cm ⁻¹	0.00019	0.00038		
$\mu_{ m e}$ / D*	-4.59 (-4.57)	-4.59 (-4.	.74)	
A _{so} /cm ^{-1**}	-83	-83 [<i>cf</i> . FeF (⁶ ∆ _i) -78.15]***	

* Electric field derivative of Energy ** Basis sets: Wachters+f (Fe), aug-cc-pVTZ (C,N) *** Allen and Ziurys (1997)

	FeCN		FeNC
Mulliken Charge (Fe)	0.682		0.946
Ionicity		<	
<i>r</i> _e (Fe-C/N) / Å <i>w</i> ₃(Fe-C/N) / cm⁻¹	2.048 420	> <	1.935 476
r _e (C-N) / Å <i>ω</i> ₁(C-N) / cm⁻¹	1.168 2179	< >	1.182 2090

 $\leftarrow \textit{e-transfer to CN}^* \\ 10\sigma \text{ orbital}$

FeCN

Comparison with Variational Method (MORBID)

	Fe ¹² CN /cm ⁻¹		Fe ¹³ CN	I /cm ⁻¹
	Perturb.	MORBID	Perturb.	MORBID
$(0, 1^{1e, f}, 0)$	170.3	170.4	165.4	165.4
(0,2 ⁰ ,0)	317.1	329.8	311.3	321.2
(0,0 ⁰ ,3)	438.1	423.2	429.3	417.6
(1,0 ⁰ ,0)	2150.3	2153.4	2103.4	2106.14
B_0	0.12426	0.12456	0.12295	0.12323

Averaged bond lengths in Å from MORBID

	< <i>r</i> (Fe-C) >	< <i>r</i> (C-N) >	< <i>r</i> (C-N) cos τ >	< D(Fe-C-N) >
r _e	2.048	1.168		0
(0,0,0)	2.082	1.172	1.158	10(5)
(0,1 ^{1e,f} ,0) 2.088	1.173	1.146	15(6)
(0,2 ⁰ ,0)	2.083	1.173	1.311	18(9)
(1,0 ⁰ ,0)	2.089	1.178	1.155	10(5)
(0,0 ⁰ ,1)	2.093	1.172	1.158	10(5)

Now we can make quantitative arguments....

Floppiness in bending motion

 Bending force constant (aJ) from the 3-D PES FeNC > FeCN > CoCN > NiCN 0.036 0.085 0.151 0.180

Bending potential: FeNC > FeCN > CoCN > NiCN

C-N bond lengths

C-N Bond length / Å				
	FeNC	FeCN	CoCN	NiCN
Obs. (r ₀)	1.03(8)	?	1.131	1.159
Calc. (r _e)	1.182	1.168	1.168	1.166
(r ₀)	1.187	1.172	1.172	1.171
Difference	-0.15	?	-0.041	-0.012
(%)	-12.9	?	-3.4	-1.0

Then, **WHAT** does the experimentally obtained r_0 values mean ?

The difference between experimental and predicted values indicates the *existence of large-amplitude bending motion*.

However, experimentally derived r_0 value, in this case, has No-physical meaning for the understanding of the chemical bond.

We need to explore a new method to derive physically-sound, and meaningful r_0 from experiments for this type of floppy molecule !!!

We used to be Helpers (助っ人).

Now, we are one of the Main-players in Molecular Spectroscopy

Acknowledgements

- All calculations were carried out on AIST Super Clusters
- Dr. Yoshio Tanaka, Grid research center, AIST, providing us their computer resources.
- CREST project "Development of MO calculation system for large molecules on grid."

Thank you for your attention !

T. Hirano

U. Nagashima

P. Jensen

Computational Molecular Spectroscopy is

a Spectroscopy of Molecules using Computational Methods.

 Experimental spectroscopy --- Laser, Microwave, ...
 Computational spectroscopy --- ab Initio methods, based on the potential energy surface

For example: r_0 (C-N) of NiCN

- Experimental 1.1591(29) Å (Visible LIF: Kingston, et al. 2002) 1.1590(2) Å (MW: Sheridan, et al. 2003)
- Computational 1.171 Å (MORBID: Hirano, et al. 2007)
 - *cf.* 1.160 Å (averaged z-axis projection)

Which is more accurate, and more physically sound?

ii) CN bond lengths: MORBID Expectation value

Ro-vibrationally averaged MORBID structure

	FeNC	CoCN	NiCN	BrCN ⁺
<i>r</i> _e (C-N) /Å	1.182	1.168	1.166	1.199
r₀(C-N) /Å	1.187	1.172	1.171	1.204
< ρ̄ > / deg.	13(7)	8(5)	9(5)	8(4)

- Both *r*_e(C-N) and *r*_e(C-N) fall inside of the normal C-N bond length 1.16-1.19 Å. BrCN+ is a cation, and hence gives a little longer C-N bond.
- MORBID expectation value of the bond length r_0 :
 - a little longer than the equilibrium bond length r_e . keeps almost constant unless the associated bond is vibrationally excited. \rightarrow physically sound bond length to characterize a chemical bond even for molecules showing large amplitude bending motion.
- Although the equilibrium structure is linear, the ro-vibrationally averaged structure is bent.

This is our answer to the longstanding debate : How to treat a large amplitude bending motion.

Observe B_0 's for isotopomers

- \rightarrow derive r_0 's, assuming <u>linear</u> structure for the moment of inertia calc.
- \rightarrow interpret thus derived r_0 's as the projection average onto the *a*-axis in the bending motion.

However, NO average over bending motion is taken into account in this procedure !

NiCN case:

Experimentally decided r_0 agrees with MORBID $< r(C-N) \cos \tau >_0$, since B_0 's for ⁵⁸NiCN and ⁶⁰NiCN are corrected for the rotationvibration interaction α_{i} .

Now, the turn is in the experimental side.

Explicit treatment of large amplitude bending motion is necessary.

FeNC

Comparison with Variational Method (MORBID)

	Rovibrational level /cm ⁻¹		
	SURFIT	MORBID	
$v_2 = 1, L = 1$	102.3	102.3	
$v_2 = 2, L = 0$	191.2	189.6	
$v_3 = 1, L = 0$	480.7	486.0	
$v_1 = 1, L = 0$	2061.0	2065.6	
B_0	0.1434 (1.2%)	0.1434(1.2%)	

Exp. $B_0 = 0.1452 \pm 0.0002$, $B_{0,\Omega=9/2} = 0.14447(13)$

Averaged bond lengths in Å from MORBID

	< <i>r</i> (CN) >	< <i>r</i> (Fe-N) >	c	4 4 9 9	4 005
r_0 (Ground state)	1.187	1.967	CT. r _e r (Obs)	1.182	1.935
<i>v</i> ₂ = 1, <i>L</i> = 1	1.187	1.971	$T_0(ODS)$	1.03(0)	2.01(3)
$v_2 = 2, L = 0$	1.188	1.970			
$v_3 = 1, L = 0$	1.187	1.976			
$v_1 = 1, L = 0$	1.195	1.969			

Expectation values from MORBID analysis: FeNC

$(v_1, v_2^{/2}, v_3)$	< <i>r</i> (Fe-N)>/Å	< <i>r</i> (N-C)>/Å	< <i>r</i> (Fe-N) cos(η)>/Å	< <i>r</i> (N-C) cos(τ)>/Å	< ņ >
(0,0 ⁰ ,0)	1.967	1.187	1.964	1.164	13(7)
(0,1 ^{1e,<i>f</i>} ,0)	1.971	1.187	1.965	1.141	20(7)
(0,2 ⁰ ,0)	1.970	1.188	1.960	1.113	25(12)
(1,0 ⁰ ,0)	1.969	1.195	1.965	1.169	13(7)
(0,0 ⁰ ,1)	1.976	1.187	1.972	1.159	13(7)
cf.					
Equil. Struct	1.935	1.182			0.0
<i>Exp. r</i> ₀ (Lie <i>et al</i> ., 2001	2.01(5) I)	1.03(8)			0.0

• The < r(N-C) >, ~ 1.187 Å, a little longer than $r_e(N-C)$, does not change unless the C-N bond is excited. \rightarrow Physically meaningful, proper quantity.

• Exp. r_0 is not the averaged projection onto *a*-axis. \rightarrow No physical meaning !

Exp. model is inadequate !!

Explicit treatment of large amplitude bending motion is necessary.

CoH Co^{δ+} **H**^{δ-}

	\widetilde{X} $^{3}\Phi$	${}^5\Phi$
CASSCF / m <i>E</i> _h	4.8	0.0
MRCPA(4)/ m <i>E</i> _h	0.0	28.8
∆(Dynamical Electron Correlation) / m <i>E</i> h	33.6	
Net Charge (Co)	+0.45	+0.12
Ionicity (Co-H)	>	•
<i>r</i> _e (Со-Н) / Å	1.510	1.632
<i>w</i> ₃ (Co-H) / cm ⁻¹	1925	1756

Dynamical electron correlation → Low-spin

The same tendency is found for FeH, CoCN