The Planck constant and its units

P. R. Bunker, I. M. Mills and Per Jensen

The Planck constant and its units

Mohr P J and Phillips W D, *Metrologia* (2015) 52, 40-47 Mills I, *Metrologia* (2016) 53, 991-997 "A flaw in the SI system," *Nature* (2017) 548, 135 Quincey P, Mohr P J and Phillips W D, *Metrologia* (2019) 56, 043001 Bunker P R, Mills I M and Jensen Per, *JQSRT* (2019) 237, 106594(3)

The Planck constant and its units

Mohr P J and Phillips W D*, Metrologia* (2015) 52, 40-47 Mills I. *Metrologia* (2016) 53, 991-997 "A flaw in the SI system," *Nature* (2017) 548, 135

Quincey P, Mohr P J and Phillips W D, *Metrologia* (2019) 56, 043001 Bunker P R, Mills I M and Jensen Per, *JQSRT* (2019) 237, 106594(3)

The Lost Dimension

A flaw in the SI system leaves physicists grappling with ambiguous units.

In SI, angles are considered to be dimensionless and their units are therefore unmentionable. The mathematical formulation of the laws of nature involves constants. Their values cannot be explained by theory (yet?). They just have to be measured.

There are two types of constant.

With dimensions: Examples are h, c, e, k

and

Dimensionless: Examples are M_p/m_e and α .

The Planck constant

Christians and muslims await the second coming of Jesus

But for physicists there have been many comings of the Planck constant, and each time it involves some sort of quantization. I now list a few important comings. E = hv

Planck

Einstein

E = hv

 $p = h/\lambda$

 $L = nh/2\pi$

de Broglie

Bohr

$i(h/2\pi)d\Psi/dt = H\Psi$ Quantum Mech.

It does not have the same units at every coming. But let's first talk about measuring *h*, and the kg.

The measurement of the value of h

Phys. Rev., 7, 355 (1916)

Robert Millikan 1868-1953

Millikan wanted to test Einstein's theory E(photon) = hvusing the photoelectric effect.

He wanted to prove that Einstein was wrong.

Photoelectron kinetic energy as a function of v (from E = hv)

For all materials the slope of E_{kin} vs frequency has slope *h*.

Millikan's paper describes 10 years of work in which he used cleaned lithium and sodium surfaces (in vacuo) with seven different mercury lines (from 2399 Å to 5461 Å) to measure electron energy as a function of frequency. He confirmed the Einstein equation.

Towards the end of his paper Millikan writes: Phys. Rev., 7, 355 (1916)

9. Theories of Photo Emission.

Perhaps it is still too early to assert with absolute confidence the general and exact validity of the Einstein equation.

$$E_{\rm kin} = h\nu - W_0$$

the semi-corpuscular

theory by which Einstein arrived at his equation seems at present to be wholly untenable.

Wave-particle duality

Millikan's grudging summary: Phys. Rev., 7, 355 (1916)

IO. SUMMARY.

I. Einstein's photoelectric equation has been subjected to very searching tests and it appears in every case to predict exactly the observed results.

2. Planck's *h* has been photoelectrically determined with a precision of about .5 per cent. and is found to have the value

$$h = 6.57 \ x \ 10^{-27}.$$

RYERSON PHYSICAL LABORATORY,

UNIVERSITY OF CHICAGO.

Millikan's grudging summary: Phys. Rev., 7, 355 (1916)

IO. SUMMARY.

I. Einstein's photoelectric equation has been subjected to very searching tests and it appears in every case to predict exactly the observed results.

2. Planck's *h* has been photoelectrically determined with a precision of about .5 per cent. and is found to have the value

 $h = 6.57 \ x \ 10^{-27}$.

RYERSON PHYSICAL LABORATORY,

UNIVERSITY OF CHICAGO.

Modern more accurate measurements of the value of *h* have been used to define the 2019 kg. To help you understand this, I first show how the measurement of the speed of light was used to define the 1983 metre.

QUANTITY CALCULUS (Maxwell)

value of a quantity = numerical value x units

$c = 299~792~458~{ m m~s^{-1}}$ $c = 29.979~245~8~{ m cm~ns^{-1}}$ Each of the above is the *value* of the speed of light.

The *numerical values* are: c/(m s⁻¹) = 299 792 458 c/(cm ns⁻¹) = 29.979 245 8 1967 – 1983: The value of c determined using definitions of 'metre' and 'second'

c = 299 792 458 m s⁻¹

The value of *c* is fixed by Mother Nature

The numerical value of *c* in m s⁻¹ is determined using the definitions of the metre and of the second

Since 1960,

The metre is the length equal to 1 650 763.73 wavelengths of the "krypton 6057 ${\rm \AA}$ line."

Since 1967, the second is the duration of 9 192 631 770 periods of the "9.19 GHz ¹³³Cs hfs transition."

The 1983 definition of the metre c = 299792458 ms⁻¹

The value of *c* is fixed by Mother Nature

The numerical value of c in m s⁻¹ is FIXED to be this.

Since 1967, the second is the duration of 9 192 631 770 periods of the "9.19 GHz ¹³³Cs hfs transition."

The metre is the length of the path travelled by light in vacuum in 1/(299 792 458) s.

The numerical value used was determined in a precise spectroscopy experiment so that new metre is consistent with the "Krypton metre."

VOLUME 29, NUMBER 19

PHYSICAL REVIEW LETTERS

6 November 1972

Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser

K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, and G. W. Day *Quantum Electronics Division, National Bureau of Standards, Boulder, Colorado 80302*

and

R. L. Barger* and J. L. Hall[†] National Bureau of Standards, Boulder, Colorado 80302 (Received 11 September 1972)

The frequency and wavelength of the methane-stabilized laser at 3.39 μ m were directly measured against the respective primary standards. With infrared frequency synthesis techniques, we obtain $\nu = 88.376181627(50)$ THz. With frequency-controlled interferometry, we find $\lambda = 3.392231376(12) \mu$ m. Multiplication yields the speed of light c = 299792456.2(1.1) m/sec, in agreement with and 100 times less uncertain than the previously accepted value. The main limitation is asymmetry in the krypton 6057-Å line defining the meter.

1983 CODATA value 299 792 458 m/s

1889-2019 definition of the kilogram in the SI

The kilogram is the unit of mass;

it is equal to the mass of the international prototype of the kilogram. The IPK

- represents the mass of 1 dm³ of H₂O at maximum density (4 °C)
- manufactured around 1880, ratified in 1889
- alloy of 90% Pt and 10% Ir
- cylindrical shape, Ø = h ~ 39 mm
- kept at the BIPM in ambient air

The kilogram is the last SI base unit defined by a material artefact.

5 official copies made and kept in Paris

Calibration history of the oldest national prototypes

Is the IPK losing mass or are the check standards getting heavier ??

Redefinition of the kg in terms of a fundamental constant of nature, for example Planck constant h (advantageous for electrical metrology)

Royal Society Discussion Meeting: The new SI, January 2011

The 2019 definition of the kilogram $h = 6.626\ 070\ 15\ x\ 10^{-34}\ kg\ m^{2}\ s^{-1}$

The value of h is fixed by Nature

The numerical value of h in kg m² s⁻¹ is FIXED to be this.

The second is the duration of 9 192 631 770 periods of the "9,19 GHz ¹³³Cs hfs transition."

The metre is the length of the path travelled by light in vacuum in 1/(299 792 458) s.

The effect of this equation is to define the kg. But first an accurate determination required.

Two highly precise experimental methods for determining the Planck constant

X-ray crystal density

Using a Kibble balance

X-ray crystal density

Determine the number of Silicon atoms (~2x10²⁵) in a highly polished sphere (~94 mm diameter) of pure ²⁸Si with a mass of one kilogram. This gives the Avogadro constant N_A .

$$N_A h = \frac{cA_r(e)M_u\alpha^2}{2R_\infty}$$

 $M_{\rm u}$ = molar mass constant = 10⁻³ kg/mol $A_{\rm r}$ (e) = relative atomic mass of electron

$$[A_r(e) M_u / N_A] = m_e$$
 in kg

Achim Leistner at the Australian Centre for Precision Optics (ACPO) holding a one-kilogram single-crystal silicon sphere prepared for the International Avogadro Coordination

NRC-17 A summary of the Planck constant determinations using the NRC Kibble balance

B M Wood, C A Sanchez, R G Green and J O Liard

National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

E-mail: barry.wood@nrc-cnrc.gc.ca

Received 31 March 2017, revised 28 April 2017 Accepted for publication 3 May 2017 Published 30 May 2017

The last determination of the numerical value of the Planck constant.

After fixing the numerical value of *h*, the Kibble balance will become an instrument for measuring absolute mass

We could then determine the mass of each kilogram artifact on a regular basis.

h is not the only dimensioned constant that gets a defined numerical value in 2019

Newell D B et al., *Metrologia* (2018) 55 L13.

Quantity	Val	lue	Redefined base unit
h e	6.626 070 15 1.602 176 63	$5 \times 10^{-34} \text{ J s}$ $4 \times 10^{-19} \text{ C}$	kg ampere
k N _A	$\begin{array}{c} 1.380649\times10^{-23}~\mathrm{J}~\mathrm{K}^{-1}\\ 6.02214076\times10^{23}~\mathrm{mol}^{-1} \end{array}$		K mole
S	ee www.bipm.org	C = A s J = kg	s m² s-²

The base units in the International System of Units (SI).

h is not the only dimensioned constant that gets a defined numerical value in 2019

Newell D B et al., *Metrologia* (2018) 55 L13.

QUANTITY CALCULUS (Maxwell)

value of a quantity = numerical value x units

$c = 299~792~458~{ m m~s^{-1}}$ $c = 29.979~245~8~{ m cm~ns^{-1}}$ Each of the above is the *value* of the speed of light.

The *numerical values* are: c/(m s⁻¹) = 299 792 458 c/(cm ns⁻¹) = 29.979 245 8

QUANTITY CALCULUS (Maxwell) value of a quantity = numerical value x units

c = 299 792 458 m s⁻¹ c = 29.979 245 8 cm ns⁻¹

CORRECT BUT NOT QUANTITY CALCULUS:

- c = 299 792 458 m s⁻¹ d = 29.979 245 8 cm ns⁻¹
- *d*=*c* = the value of the speed of light
- $d/(cm ns^{-1}) = [c/(m s^{-1})]/10^7$

QUANTITY CALCULUS (Maxwell) value of a quantity = numerical value x units

c = 299 792 458 m s⁻¹ *c* = 29.979 245 8 cm ns⁻¹

CORRECT BUT NOT QUANTITY CALCULUS:

c = 299 792 458 m s⁻¹ *d* = 29.979 245 8 cm ns⁻¹

d=c = the value of the speed of light

 $d/(cm ns^{-1}) = [c/(m s^{-1})]/10^7$

WRONG is $d = c/10^7 = 29.979 \ 245 \ 8 \ m \ s^{-1}$

The units used for frequency

Suppose we have a frequency of 100 cycle s⁻¹ v = 100 cycle s⁻¹

= $2\pi \times 100$ radian s⁻¹

The units used for frequency

Suppose we have a frequency of 100 cycle s⁻¹

 $v = 100 \text{ cycle s}^{-1}$

With the units radian s⁻¹ spectroscopists use $\boldsymbol{\omega}$

 $ω = 2π x 100 radian s^{-1}$

 $\omega = v$ but ratio of numerical values is 2π

The units used for frequency

Suppose we have a frequency of 100 cycle s⁻¹ v = 100 cycle s⁻¹ With the units radian s⁻¹ spectroscopists use ω $\omega = 2\pi \times 100$ radian s⁻¹

 $\omega = v$ but ratio of numerical values is 2π

omitting the units of angular measure

$$v = 100 \text{ s}^{-1}$$

 $\omega = 2\pi \times 100 \text{ s}^{-1}$

and it is said that $\omega = 2\pi v$.

In fact $\omega = v$ and their numerical values have the ratio 2π .

In SI we replace s⁻¹ with Hz to further obscure the real units

A PONTIFICATION

Always explicitly state whether a frequency is in cycle s⁻¹ or radian s⁻¹. Use Hz for cycle s⁻¹.

A PONTIFICATION

Always explicitly state whether a frequency is in cycle s⁻¹ or radian s⁻¹. Use Hz for cycle s⁻¹.

Now finally to the units of the Planck constant

The units of the Planck constant

We know that

$$h = m_{\rm e} c \alpha^2 / (2R_{\infty})$$

The units of wavenumber

Units: m_e in kg, c in m s⁻¹, and R_{∞} in cycle m⁻¹ gives h the units kg m² s⁻¹ cycle⁻¹ = J s cycle⁻¹ = J/(cycle s⁻¹) = J/Hz.

$h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

The units of the Planck constant

We know that

This *h* has the dimensions of action/angle, energy/frequency and of angular momentum

wavenumper

Units: m_e in kg, c in m s⁻¹, and R_{∞} in cycle m⁻¹ gives h the units kg m² s⁻¹ cycle⁻¹ = J s cycle⁻¹ = J/(cycle s⁻¹) = J/Hz.

$h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

The units of *h* and *ħ* from paper by PRB, Mills and Jensen.

Using E = *hv*, *h* is Energy/Frequency

Energy: Units are J = kg m² s⁻² Frequency: Units are radian s⁻¹ or cycle s⁻¹

If we measure frequency in cycle s⁻¹ = Hz the units for *h* are $J/(cycle s^{-1}) = J/Hz = Js cycle^{-1}$. Just as obtained from $h = m_e c \alpha^2 / (2R_{\infty})$

If we measure frequency in radians s⁻¹ the units for *h* are $J/(radian s^{-1}) = J s radian^{-1}$

Applying rules of quantity calculus:

$h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

h = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

Note that units are those of action/angle

Within SI:

$h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s,$

 \hbar = 1.054 571 818...x 10⁻³⁴ J s, they are given the same units, and it is said that $\hbar = h/2\pi$.

In fact (angular units included) $h = \hbar$. Each is the value of the PC but with different units. Their numerical values have the ratio 2π . **Correct (but not quantity calculus) is:**

 $h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

 \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

We will call \hbar the reduced Planck constant.

N.B. $h = \hbar$, but they have different units. Their numerical values have the ratio 2π .

We do not have $\hbar = h/2\pi$

Constants	Symbol	Units
Reduced Planck constant Planck constant	ħ h	J s rad ^{-1} L Hz ^{-1}
Electron reduced Compton wavelength	$\frac{\pi}{\lambda_{\rm C}}$	m rad ^{-1}
Electron Bohr radius Rydberg constant	$\frac{a_0}{R}$	m rad ⁻¹ rad m ⁻¹
Vacuum permittivity (electric constant)	ϵ_0	$C^2 J^{-1} rad m^{-1}$
Vacuum permeability (magnetic constant)	μ_0	kg m rad ⁻¹ C^{-2}
Avogadro constant Boltzmann constant Elementary charge	N _A k e	ent mol ^{-1} J K ^{-1} ent ^{-1} C ent ^{-1}

Table 4. Fundamental constants and their units.

Summary of the units and dimensions of h and h

h is energy/frequency J/(cycle/s) = J s cycle⁻¹ $E = h_V \stackrel{\text{Planck}}{\text{Einstein}}$

The Planck constant: $h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

 $p = h/\lambda$ de Broglie h is momentum x wavelength $(kg m s^{-1})(m cycle^{-1}) = J s cycle^{-1}$

$L = n'' h / 2\pi'' = n\hbar$ **Bohr**

The reduced PC: \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

 $h = \hbar$ but they are in different units and the numerical values are in the ratio of 2π

Summary of the units and dimensions of h and h

h is energy/frequency J/(cycle/s) = J s cycle⁻¹ $E = h_V \stackrel{\text{Planck}}{\text{Einstein}}$

The Planck constant: $h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

 $p = h/\lambda$ de Broglie h is momentum x wavelength $(kg m s^{-1})(m cycle^{-1}) = J s cycle^{-1}$

$L = n'' h / 2\pi'' = n\hbar$ **Bohr**

The reduced PC: \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

BUT Quantum Mechanics gives rise to the coming of another variety of the Planck constant

Dirac's introduces \hbar as "a new universal constant" having the dimensions of action.

Pp 86-87 from Dirac's Book "The Principles of Quantum Mechanics" (1930)

From analogy between quantum mechanics and classical mechanics

"Let us try to introduce a quantum Poisson Bracket which shall be the analogue of the classical one.....

This leads to an expression involving a commutator and a real constant factor that Dirac calls \hbar , and after this expression he says:

in which \hbar is a new universal constant.) It has the dimensions of action. In order that the theory may agree with experiment, we must take \hbar equal to $h/2\pi$, where h is the universal constant that was introduced by Planck, known as Planck's constant.

Action = energy times time, units J s But *h* has dimensions of action/angle units J s cycle⁻¹

Units and dimensions

$$L = n''h/2\pi'' = n\hbar$$

The reduced PC: \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

Units and dimensions

$$L = n''h/2\pi'' = n\hbar$$

The reduced PC: \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹

Heisenberg, Schrödinger and Dirac $i(h_A/2\pi)d\Psi/dt = \hat{H}\Psi -i(h_A/2\pi)d\Psi/dq = \hat{p}\Psi$

The Planck constant of action: $h_A = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s$

There are two h and two \hbar

1. Planck, Einstein and de Broglie. E = hv, and $p = h/\lambda$.

The Planck constant: $h = 6.626\ 070\ 150\ x\ 10^{-34}\ J\ s\ cycle^{-1}$

2. Bohr. Angular momentum quantization; called ħ. The reduced Planck constant:

 \hbar = 1.054 571 818... x 10⁻³⁴ J s radian⁻¹ The numerical values of *h* and \hbar are in the ratio 2π .

3. von Klitzing. The von Klitzing constant $R_{\rm K} = h_{\rm A}/e^2$. The Planck constant of action:

 $h_{\rm A}$ = 6.626 070 150 x 10⁻³⁴ J s

4. Heisenberg, Schrödinger and Dirac; this is $h_A/2\pi$. We call it \hbar_A . The reduced Planck constant of action:

$$\hbar_{A}$$
 = 1.054 571 818...x 10⁻³⁴ J s

The reduced Planck constant of action is what is called "The Dirac constant" in the current literature.

Kibble balance equations

Measure voltage U_1 . Use the Josephson effect

 $U_1 = hv_1/(2e)$. U_1 to v_1 conversion.

The voltage across the barrier layer is the product of h/(2e) and the time derivative of the phase difference v_4 (in cycle s⁻¹). h in J s cycle⁻¹.

The units of $U_1 = hv_1/(2e)$ are (J s cycle⁻¹)(cycle s⁻¹)/(A s) = J/(A s) = volt.

Measure current *I*. Use Josephson and quantum Hall effects $I = U_2/R_K = [hv_2/(2e)]/R_K$ The von Klitzing constant $R_K = h_A/e^2$. The constant h_A in J s. The units of h_A/e^2 are (J s)/(A² s²) = J s⁻¹ A⁻² = ohm. So $I = U_2/R_K = [hv_2/(2e)]/(h_A/e^2) = (h/h_A) (v_2e/2)$ Note that $(h/h_A) = 1$ cycle⁻¹ The units of $I = (h/h_A) (v_2e/2)$ are (cycle⁻¹)(cycle s⁻¹)(A s) = A, ampere.

From this we get $U_1 I = h(h/h_A)v_1v_2/4$ with units J s⁻¹

and thus $h = 4U_1 I(h_A/h)/(v_1 v_2)$ with units J s cycle⁻¹.

where $h_A/h = 1$ cycle

Getting the units of *h* from its relation to the Avogadro constant.

$$N_A h = \frac{cA_r(e)M_u\alpha^2}{2R_\infty}$$

- N_A Avogadro-constant
- h Planck-constant
- c speed of light
- α fine-structure constant
- R_∞ Rydberg constant
- e elementary charge
- M_u molar mass constant = 1x10⁻³ kg/mol

 $A_{\rm r}({\rm e})$ and α are dimensionless. $M_{\rm u}/N_{\rm A}$ has units of kg. R_{∞} has units of cycle m⁻¹ Units of h are those of $c(M_{\rm u}/N_{\rm A})/R_{\infty}$, which is (m/s) kg m cycle⁻¹ = J s/cycle

X-ray crystal density

Spectral Distribution Function $I(\lambda, T) = K_{\lambda}$ of Black-Body Radiation. The Wien expression.

Spectral Distribution Function $I(\lambda, T) = K_{\lambda}$ **of Black-Body Radiation.** Wien is no good at large λ .

1899 Lummer, Pringsheim, Rubens, and Kurlbaum experiments to 50 μm

Max Planck (1900): Fits Black Body Radiation

AN EMPIRICAL FIT

IV. Verhandlungen der physikal. Gesellschaft 2, p. 202; 1900. Ueber eine Verbesserung der Wienschen Spektralgleichung, (1) (Vorgetragen in der Sitzung vom 19. Oktober 1900.)

 $e_{\lambda} = \frac{C\lambda^{-5}}{e^{c'/\lambda T} - 1}$ Planck 'adds' this "-1" to the denominator of Wien's expression. Fits at high λ .

14 December

Max Planck(1900): **DERIVES** his Distribution Law by assuming Black Body "oscillators" are quantized

At large λ : exp(c'/ λ T) = 1 + (c'/ λ T), and we get Rayleigh-Jeans classical expression $e_{\lambda} = 2ckT\lambda^{-4}$

Planck constant(s): birth

9. Ueber das Gesetz der Energieverteilung im Normalspectrum; von Max Planck.

(In anderer Form mitgeteilt in der Deutschen Physikalischen Gesellschaft, Sitzung vom 19. October und vom <u>14. December 1900</u>, Verhandlungen 2. p. 202 und p. 237. 1900.)

§ 2. Wir setzen nun die Entropie S_N des Systems, bis auf eine willkürlich bleibende additive Constante, proportional dem Logarithmus der Wahrscheinlichkeit W dafür, dass die N Resonatoren insgesamt die Energie U_N besitzen, also:

 $S_N = A \log W + \text{const.}$

(3)

§ 10. Wenden wir das Wien'sche Verschiebungsgesetz in der letzten Fassung auf den Ausdruck (6) der Entropie S an, so erkennen wir, dass das Energieelement 4 proportional der Schwingungszahl v sein muss, also:

 $\epsilon = h \cdot r$

Unnumbered equation

Hierbei sind h und k universelle Constante.

Einstein (1905): EM radiation is Quantized

Einstein's famous paper with the title:

"On a heuristic viewpoint concerning the production and transformation of light."

Introduces photons with energy E = hv

"It endowed Planck's quantum hypothesis with physical reality. The oscillators for which Planck proposed energy quantization were fictitious, and his theory for blackbody radiation lacked obvious physical consequences. But the radiation theory for which Einstein proposed energy quantization was real, and his theory had immediate physical consequences."

D. Kleppner, Physics Today, February 2005 page 30.