From Lines to States without a Model Mini-Symposium at Bergische Universität Wuppertal

Stefan Brackertz, UzK

December 12, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

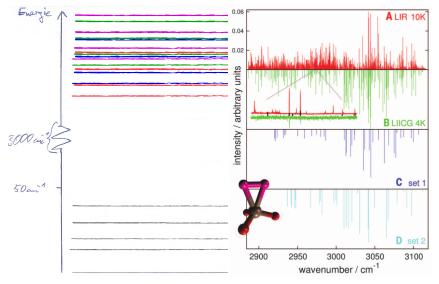
### What is it all about?

Typical Model Based Data Evaluation

- Chose appropriate model = Hamiltonian with parameters typical parameters: rotational constant, centrifugal distortion constant
- calculate parameter dependent lines Hamiltonian
- fit the calculated lines to the measured lines to get the parameter values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

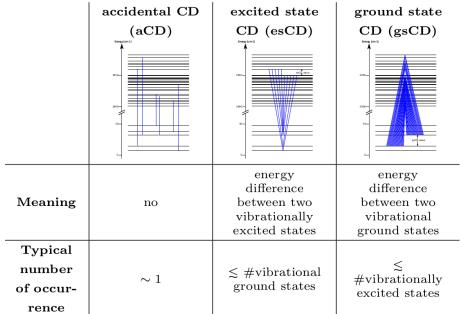
### What is it all about?


CH<sub>5</sub><sup>+</sup>: Prototype of a Floppy Molecule

- 120 different, energetically equivalent arrangements of the nuclei, only small energy barriers<sup>1</sup>
- Vibration and rotation not separable as common<sup>2</sup>
- First model only available for a short time
- $\implies$  Usual methods not usable

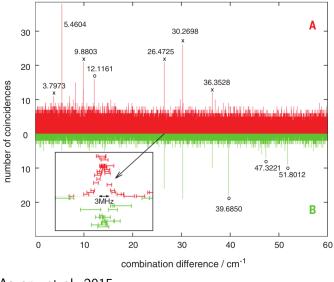
<sup>&</sup>lt;sup>1</sup>Huang et al. 2006, Kumar et al. 2006, Jin et al. 2006 <sup>2</sup>Schmiedt et al. 2015

## What happened so far?


### Measurements



Asvany et al. 2005


## What happened so far?

Data Evaluation using Combination Differences (CDs)



### What happened so far?

Data Evaluation using CDs at two Temperatures: CD spectra



Asvany et al. 2015

### Model-less Data Evaluation

Common Approaches and Plausible Reasoning Made Systematic

- Simplification based (Moruzzi)
- Temperature based
- Mixed: Temperature, combinatorics and plausible reasoning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

New: Data evaluation completely based on combinatorics

Comparison:  $\rightarrow$  Bonus track

### What is New?

Results from my Diploma Thesis

- Further development of the CD spectra
  - CD spectra as kernel density estimators
    - ★ Problem and idea
    - \* Choice of the kernel
    - ★ Choice of the bandwidth
  - $\blacktriangleright$  Using scaling behavior for noise cancellation  $\rightarrow$  Bonus track

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- From CD peaks to states a new method
  - Reconstruction of the vibrational ground states
  - Rekonstruction of the vibrationally excited states

### Further Development of the CD Spectra

CD as kernel density estimators: Problem and Idea

**Problem**: CD values have measurement errors  $\implies$  How to count?

Answer of Asvany et al.: #neighboring CDs within the error  $\implies$  New Problem $\rightarrow$  Bonus track

**Finding:** CD spectra are kernel density estimators (KDEs)  $\implies$  Application of common knowledge about kernel density estimators (see for instance: M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall/CRC, 1995)

# Further Development of the CD Spectra What is a KDE?

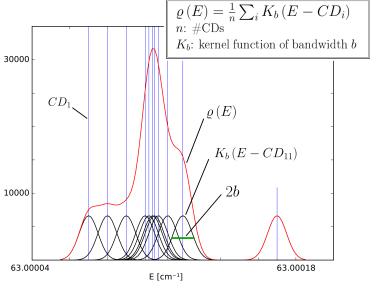



Figure based on Wand et al., 1995, Fig.~2.2

・ロト < 団ト < 三ト < 三ト < 三 ・ のへで</li>

## Further Development of the CD Spectra

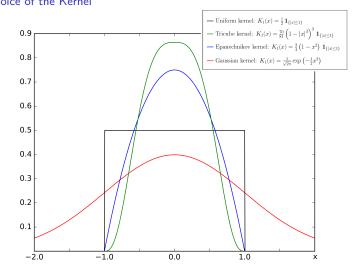
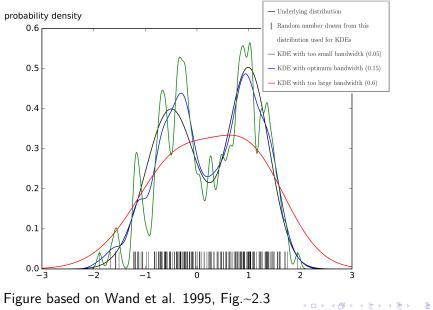
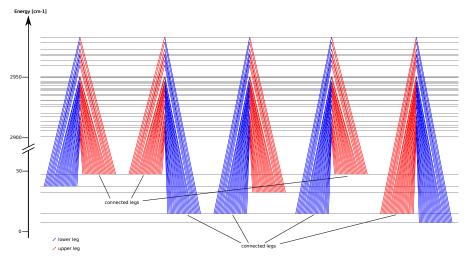




Figure inspired by Wand et al. 1995, Fig.~2.7


・ロト・西ト・モート ヨー うらの

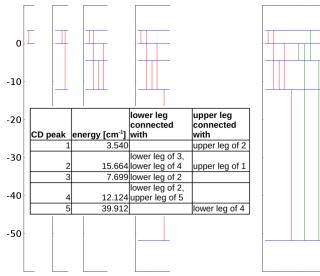
## Further Development of the CD Spectra

### Choice of the Bandwidth



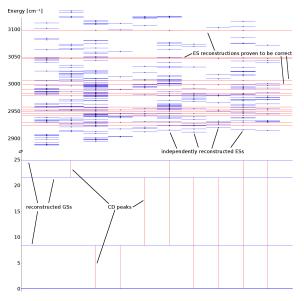
### From CD Peaks to States




Selection rules and by mistake assigned aCDs are neglected in this sketch.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

### From CD Peaks to States


### Reconstruction of the Vibrational Ground States





### From CD Peaks to States

### Reconstruction of the Vibrationally Excited States



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで