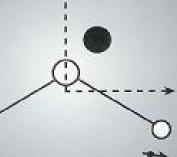


INSTITUTE OF PHYSICS SERIES IN CHEMICAL PHYSICS

FUNDAMENTALS OF MOLECULAR Symmetry


The prequel to

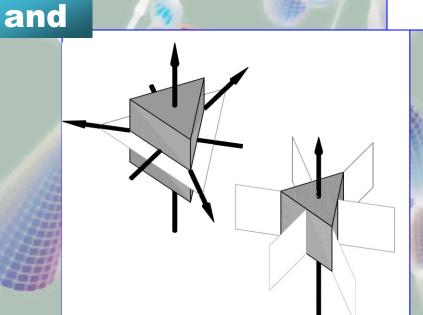
PRBUNKE PJENSEN

Philip R. Bunker and Per Jensen

NAC CNAC

MOLECULAR SYMMETRY AND SPECTROSCOPY SECOND EDITION

I₀P


Self-contained account of molecular symmetry:
how is it understood?
how and when is it used?

Includes a concise description of molecular spectroscopy and quantum mechanics

> For undergraduate and research students in molecular science

A balanced account of

MOLECULAR SYMMETRY (MS) GROUPS

POINT GROUPS

(123)

×

2

×

3.

 $\stackrel{E^*}{\Longrightarrow}$

0.

3

×

3

Contents

	Con	tents	\mathbf{v}
	Pref	face	ix
	PAI	RT 1	
	Spe	ctroscopy and the quantum states of molecules	1
1	Mol	ecular spectroscopy	2
	1.1	Molecular spectra	2
	1.2	The energies of molecules in the gas phase	5
	1.3	The positions of spectral lines	9
	1.4	The intensities of spectral lines	10
	1.5	The shapes of spectral lines	12
	1.6	Raman spectra	14
	1.7	Problems	15
2	Qua	ntum mechanics	17
	2.1	The Schrödinger equation	17
	2.2	The postulates of quantum mechanics	18
	2.3	Diagonalizing the Hamiltonian matrix	21
	2.4	The molecular Schrödinger equation	26
	2.5	The separation of translational energy	27
	2.6	The rovibronic Schrödinger equation	32
	2.7	The angular momentum operator	34
	2.8	The dipole moment operator and line strengths	36
	2.9	Matrices and matrix algebra	37
	2.10	Problems	41
3	Electronic states		43
	3.1	The Born-Oppenheimer approximation	43
	3.2	Spin and the Pauli exclusion principle	47
	3.3	Electronic wavefunctions and energies	49
	3.4	Molecular orbital theory	55
	3.5	Problems	67

		Contents	vi	
4	Vibrational states			
	4.1 Space-fixed and molecule-fixed axes		70	
	4.2 The vibrational Hamiltonian		72	
	4.3 Vibrational wavefunctions and energies		74	
	4.4 Anharmonicity		80	
	4.5 Tunneling		83	
	4.6 Problems		90	
5	Rotational states		92	
	5.1 The Euler angles		92	
	5.2 The principal moments of inertia		93	
	5.3 The rigid-rotor Hamiltonian		95	
	5.4 Rovibronic wavefunctions		99	
	5.5 The Hamiltonian and wavefunctions in det	ail	100	
	5.6 Problems		111	
	PART 2		115	
	Symmetry and symmetry groups			
6	Geometrical symmetry		116	
	6.1 Geometrical symmetry operations		116	
	6.2 Geometrical symmetry groups: Point grou	\mathbf{ps}	120	
	6.3 The point group symmetry of molecules		125	
	6.4 Problems		129	
7	The symmetry of the Hamiltonian		130	
	7.1 Hamiltonian symmetry operations		130	
	7.2 Nuclear permutations and the inversion E	*	131	
	7.3 Symmetry labels		136	
	7.4 Symmetry groups		138	
	7.5 The vanishing integral rule		141	
	7.6 Selection rules		144	
	7.7 The rovibronic symmetry label J		145	
	7.8 Diagonalizing the Hamiltonian matrix usin	$ m ig \ symmetry$	146	
	7.9 The Stark effect		147	
	7.10 The symmetry of H_3^+		148	
	7.11 Group theory		154	
	7.12 Problems		161	
8	The symmetry groups of rigid molecules		164	
	8.1 The CNPI group		164	
	8.2 The molecular symmetry (MS) group		168	
	8.3 The MS group and the point group		170	
	8.4 Problems		182	

Contents

vii

	PART 3	
	Applications of symmetry	184
9	Nuclear spin, statistical weights and hyperfine structure	185
	9.1 The fifth postulate of quantum mechanics	185
	9.2 Statistical weights	186
	9.3 Missing levels	190
	9.4 Statistical weights for CH ₃ F	193
	9.5 Nuclear spin hyperfine structure	194
	9.6 Problems	198
10	The symmetry of electronic wavefunctions	199
	10.1 The water molecule	199
	10.2 The benzene molecule	203
	10.3 The butadiene molecule	212
	10.4 Conservation of orbital symmetry	213
	10.5 The noncrossing rule	224
	10.6 The C_6 and σ_v operations for benzene	225
	10.7 Problems	227
11	The symmetry of rotation-vibration wavefunctions	229
	11.1 The transformation properties of the Euler angles	229
	11.2 The symmetry of rotational wavefunctions	233
	11.3 The symmetry of normal coordinates	238
	11.4 The symmetry of vibrational wavefunctions	243
	11.5 Rotation-vibration coupling	245
	11.6 Problems	251
12	Symmetry selection rules for optical transitions	253
	12.1 Forbidden and allowed transitions	253
	12.2 Zero order transition moment integrals	255
	12.3 Transitions within an electronic state	257
	12.4 Transitions between electronic states	273
	12.5 Raman transitions	275
	12.6 Problems	281
13	The symmetry groups of nonrigid molecules	283
	13.1 The MS group of a nonrigid molecule	283
	13.2 The ammonia molecule	284
	13.3 Torsionally tunneling ethylene	286
	13.4 Intensity alternations for HSSH and DSSD	289
	13.5 The water dimer and the water trimer	292
	13.6 Ethylene and its Raman spectrum	298
	13.7 Problems	300

	Contents	viii
PART 4		
Other symmetries and symmetry violation	ı	301
14 Other symmetries		302
14.1 The fourth postulate of quantum mechanic	s	302
14.2 Conservation laws		303
14.3 Electron permutation symmetry		304
14.4 Translational symmetry		305
14.5 Rotational symmetry		310
14.6 Charge conjugation		313
14.7 Parity		315
14.8 Time reversal		318
15 Symmetry violation		320
15.1 The electroweak Hamiltonian		320
15.2 Parity (P) violation		321
15.3 CP violation		323
15.4 T violation		325
15.5 Testing for CPT violation		326
15.6 Testing for permutation symmetry violation	n	327
A Answers to selected problems		330
B Character tables		341
C Books for further reading		363

Publisher: IOP Publishing, Bristol, UK

Expected publication date: December 2004

Expected price (paperback, 378 pages): US\$ 65

See

http://bookmark.iop.org/bookpge.htm?&isbn=0750309415

(or see our homepages)