Large Amplitude Bending Motion:

Computational Molecular Spectroscopy and Experiments of Transition-Metal Containing Isocyanide and Cyanides.

Tsuneo HIRANO,^{a,b} Rei OKUDA,^b Umpei NAGASHIMA,^b Per JENSEN^c

^aOchanomizu University (Japan), ^bRICS-AIST (Japan), and ^cUniversity of Wuppertal (Germany)

The effects of large amplitude bending motion gave rise to a longstanding debate:

CsOH: D.M. Lide, R.L. Kuczkowski, J. Chem. Phys., 46, 4768 (1967).
D.M. Lide, C. Matsumura, J. Chem. Phys., 50, 3080 (1969)
RbOH: C. Matsumura, D.R. Lide, J. Chem. Phys., 50, 71 (1969)

r_c: M. Nakata, K. Kuchitsu, *et al.*, *J. Mol. Spec.*, **83**,118 (1980) OCCI2
 J. Mol. Spec., **86**,241 (1981) OCCI2
 J. Mol. Struc., **320**,179 (1994) OCS, *etc.*

r_m⁽²⁾: J.K.G. Watson, *et al.*, *J. Mol. Spec.*, **196**,102 (1999)
 K.A. Walker, et al., *J. Mol. Spec.*, **209**, 178 (2001)
 AINC/AICN, GaNC/GaCN, InNC/InCN

However, mostly forgotten in recent experimental studies.

FeNC

Exp. (LIF) Lie & Dagdian (2001)	Exp. (MW) Sheridan and Ziurys (2004
$B_0 = 0.1452 (2) \text{ cm}^{-1}$ $B_0 (^6\Delta_{9/2}) = 0.14447(13) \text{ cm}^{-1}$	$B_0({}^3\Phi_4)$ = 4208.827(23) MHz
2.01(5) Å <u>1.03(8) Å</u> Fe N C	1.88270 Å <u>1.13133 Å</u> Co C N
Calc. 1.935 Å <u>1.182</u> Å r_{e} B_{e} = 0.14251 cm ⁻¹ , B_{0} = 0.14341 cm ⁻¹	Calc. 1.854 Å <u>1.168</u> Å r_{e} B_{e} = 4209.9 MHz, $B_{0}(^{3}\Phi_{4})$ = 4229.1 MHz
NiCN Exp. (LIF) Kingston, Merer, Va B_0 ($^2\Delta_{5/2}$) = 0.1444334(3) (MW) Sheridan, Ziurys (2) B_0 ($^2\Delta_{5/2}$) = 0.14443515(2)	arberg (2002) 0) cm^{-1}However, Difference in B_0 is small:2003)FeNC _{calc} -1.2 % CoCN _{calc} 0.5 %
LIF 1.8292(28) Å <u>1.1591(2</u> MW 1.8293(1) Å <u>1.1590(1</u> Ni C N Calc. 1.8141 Å <u>1.1665</u> Å $B_0 = 0.14552 \text{ cm}^{-1}$, $B_0(^2 \Delta_{5/2})$	9) Å $r_0(^2\Delta_{5/2})$ NiCN _{calc} 0.8 % r_e = 0.14559 cm ⁻¹

CoCN

C-N Bond length / Å						
	FeNC	CoCN	NiCN			
Obs. (<i>r</i> ₀)	1.03(8)	1.131	1.159			
Calc. (<i>r</i> _e)	1.182	1.168	1.167			
Difference/Å	-0.15 (13%)	-0.037	-0.008			

Our Calc. level: FeNC, CoCN, and NiCN MR-SDCI+Q + E_{rel} *cf.* Exp. *r*₀(NC): MgNC 1.169 Å AINC 1.171 Å CN 1.172 Å *cf.* Calc. (Hirano, *et al.* JMS, 2002) *r*_e(NC) MgNC 1.1814 Å

• **Ionicity** (Metal-Ligand) can be estimated from the C-N bond length:

M^{δ+} − (CN)^{δ-}

The transferred electron goes into $\sigma^*(CN)$ orbital \rightarrow weakens the CN bond. (*i.e.* lengthens this bond).

Hence, the iconicity of the Metal-Ligand bond should be in this order,

Fe-NC > Co-CN > Ni-CN (from *ab initio* r_e)

 And, hence, floppiness in bending motion should be Fe-NC > Co-CN > Ni-CN ,

since the more ionic, the more floppy.

Now, we know lonicity and, hence, floppiness:

Fe-NC > Co-CN > Ni-CN r_0 (Obs.):(1.03)(1.131)(1.159)

The more floppy, the shorter the CN bond length projected to the molecular axis becomes.

To go further, we need the knowledge of the **Three-dimensional Potential Energy Surfaces.**

Our Strategy in Computational Molecular Spectroscopy

1) Three-dimensional potential energy surface by the *ab initio* MO method: MR-SDCI + Q + E_{rel}

2) Fit the potential to an analytical potential function

3) The 2nd-order perturbation treatment

4) Variational calculations with MORBID or RENNER

FeNC ${}^{6}\Delta_{i}$ MR-SDCI+Q+ E_{rel} /[Roos ANO(Fe), aug-cc-pVQZ(C,N)]

Perturbational Method

	Calc.	Exp. ⁶ ∆ _i ^{a)}	Calc.	Exp. ⁶ ∆ _i ^{a)})
r _e (Fe-N) /Å	1.9354	2.01(5) (<i>r</i> ₀)	<i>w</i> _e <i>x</i> _e (11) /cm ⁻¹	-11.8	
<mark>r</mark> _e (N-C) /Å	1.1823	<u>1.03(8) (r₀)</u>	$\omega_{ m e} x_{ m e} $ (22) /cm ⁻¹	-4.0	
a _e (Fe-N-C)/deg	180.0	180.0	<i>w</i> _e x _e (33) /cm⁻¹	-3.7	
B _e /cm⁻¹	0.1425		$\omega_{ m e} x_{ m e}$ (12) /cm ⁻¹	-4.9	
$B_{0,\Omega=9/2}$ /cm ⁻¹	<u>0.14278</u> b	<u>0.14447(13)</u>	<i>w</i> _e x _e (13) /cm⁻¹	-3.7	
$D_J^* 10^8$ / cm ⁻¹	4.83		<i>w</i> _e x _e (23) /cm⁻¹	8.6	
<u><i>E</i>e</u> /Eh -13	364.19417	35	<i>g</i> ₂₂ /cm ⁻¹	2.66	
$lpha_1$ / cm ⁻¹	0.00055		ν ₁ (N-C) /cm ⁻¹	2060	
$lpha_2$ / cm ⁻¹ $lpha_3$ / cm ⁻¹	-0.00147 0.00061		ν ₂ (Fe-N-C) /cm⁻¹ ν ₃ (Fe-N) /cm⁻¹	102 475	464.1(42)
ω_1 (N-C) /cm ⁻¹	2090		Zero-Point E. /cm ⁻	⁻¹ 1385	
<i>w</i> ₂(Fe-N-C) /cm ⁻	¹ 109		ζ_{12} /cm ⁻¹	-0.97	
$\omega_3(\text{Fe-N})$ /cm ⁻¹	476		${\mathcal \zeta}_{23}$ /cm ⁻¹	-0.24	
A _{so} /cm ⁻¹	-83		<i>A</i> -doubling/cm ⁻¹	0.00038	
[<i>cf</i> . FeF	$(^{6}\Delta_{j})$ -78.18	5] ^c			
$\mu_{ m e}$ /D	-4.59		_		
(Expec. Value	-4.74)				

^a (LiF) Lie, *et al.* (2001). ^b **Difference 1.2 %** ^c Allen and Ziurys (1997)

Expectation values from MORBID analysis: FeNC

$(v_1, v_2^{/2}, v_3)$	< <i>r</i> (Fe-N)>/Å	< <i>r</i> (N-C)>/Å	< <i>r</i> (Fe-N) cos(η)>/Å	< <i>r</i> (N-C) cos(τ)>/Å	< ō >/degree
(0,0 ⁰ ,0)	1.967	1.187	1.964	1.164	13(7)
(0,1 ^{1e,<i>f</i>} ,0)	1.971	1.187	1.965	1.141	20(7)
(0,2 ⁰ ,0)	1.970	1.188	1.960	1.113	25(12)
(1,0 ⁰ ,0)	1.969	1.195	1.965	1.169	13(7)
(0,0 ⁰ ,1)	1.976	1.187	1.972	1.159	13(7)
cf.					
Equil. Struct	1.935	1.182			0.0
<i>Exp. r</i> ₀ (Lie e <i>t al</i> ., 2001	2.01(5) 1)	1.03(8)			0.0

• The < r(N-C) >, ~ 1.187 Å, a little longer than $r_e(N-C)$, does not change unless the C-N bond is excited. \rightarrow Physically meaningful, proper quantity.

• Exp. r_0 is not the averaged projection onto *a*-axis. \rightarrow No physical meaning !

Exp. model is inadequate !!

Explicit treatment of large amplitude bending motion is necessary.

CoCN $X^{3}\Phi$ MR-SDCI+Q+ E_{rel} , Perturbation method

	Calc.	Exp. ${}^3\Phi_4$ ^{a)}		Calc.	Exp. ³ Φ ₄ ^{a)}
<mark>r</mark> e(Co−C) /Å	1.8541	1.8827(7) (<i>r</i> ₀)	$\omega_{ m e} x_{ m e}(11)$ /cm ⁻¹	-10.9	
<mark>r</mark> _e (C-N) /Å	1.1677	<u>1.1313(10)</u> (r ₀)	<i>w</i> _e x _e (22) /cm⁻¹	-7.7	
a _e (Co-C-N)/deg	180.0	180.0	<i>w</i> _e x _e (33) /cm⁻¹	-2.2	
B _e /MHz	4209.9		$\omega_{ m e} x_{ m e}^{-1}$ (12) /cm ⁻¹	-3.4	
B ₀ /MHz	4234.8 ^b	<u>4208.827(23)</u>	$\omega_{\rm e} x_{\rm e} (13) / {\rm cm}^{-1}$	-4.4	
<i>D_J</i> /MHz	0.00108	0.001451(10)	$\omega_{ m e} x_{ m e} $ (23) /cm ⁻¹	35.6	
E _e /Eh -1	484.75919	17	<i>g</i> ₂₂ /cm⁻¹	8.0	
α ₁ /MHz	10.5		ν ₁ (C-N) /cm ⁻¹	2163	
α_2 /MHz	-24.7		<i>v</i> ₂ (Co-C-N) /cm⁻¹	239	
$lpha_{ m _3}$ /MHz	-12.1		<i>v</i> ₃ (Co-C) /cm⁻¹	571	~478 (?)
ω_1 (C-N) /cm ⁻¹	2191		Zero-Point E. /cm ⁻¹	1608	
ω_2 (Co-C-N) /cm ²	⁻¹ 238		ζ_{12} /cm ⁻¹	-0.98	
<i>w</i> ₃(Co-C) /cm⁻¹	542		ζ ₂₃ /cm ⁻¹	-0.22	
A _{so} /cm⁻¹ [<i>cf</i> . CoH	-242 (³ Φ) -242.	-133.3 (assumed) .7] ^c	Λ -doubling/cm ⁻¹ (0.00018	
$\mu_{ m e}$ /D	-6.993				
(Expec. Value	-7.464)				

^a (MW) Sheridan, *et al.* (2004). ^b **Difference 0.6** % ^c Varberg, *et al.* (1989)

Expectation values from MORBID analysis: CoCN

$(v_1, v_2^{\prime 2}, v_3)$	<r(co-c)>/ #</r(co-c)>	Å <i><r< i="">(C-N)>/ Å</r<></i>	< r (C-N) cos(τ)>/Å	$<\overline{ ho}$ > / deg.
(0,0 ⁰ ,0)	1.873	1.172	1.161	8(5)
(0,1 ^{1e,f} ,0)	1.877	1.173	1.152	13(5)
(0,2 ⁰ ,0)	1.873	1.173	1.141	15(8)
(1,0 ⁰ ,0)	1.874	1.180	1.164	8(5)
(0,0 ⁰ ,1)	1.882	1.172	1.161	8(5)
cf.				
Equil. Struct	1.854	1.168		0.0
<i>Exp. R</i> _{0,Ω=4} (Sheridan, et a	1.8827(7) I., 2004)	1.1313(10)		0.0

• The < r(C-N) >, ~ 1.172 Å, a little longer than $r_e(C-N)$, does not change unless the C-N bond is excited. \rightarrow Physically meaningful, proper quantity.

• Exp. r_0 is not the averaged projection onto a-axis. \rightarrow No physical meaning!

Exp. model is inadequate !!

Explicit treatment of large amplitude bending motion is necessary.

⁵⁸ NiCN $X^2\Delta_i$	MR-SD	CI+Q+ <i>E</i> _{rel} , Perturb	ation method		
	Calc.	Exp.		Calc.	Exp.
<mark>r</mark> _e (Ni−C) /Å	1.8141	1.8292(28) (<i>r</i> ₀) ^{a)}	$\omega_{\rm e} x_{\rm e}(11)$ /cm ⁻¹	-17.8	
		1.8293(1) (<i>r</i> ₀) ^{b)}	$\omega_{\rm e} x_{\rm e}$ (22) /cm ⁻¹	-96.3	
<mark>r</mark> e(C−N) /Å	1.1665	<u>1.1591(29) (</u> r ₀) ^{a)}	<i>w</i> _e x _e (33) /cm⁻¹	0.1	
		<u>1.1590(2)</u> (r ₀) ^{b)}	$\omega_{ m e} x_{ m e}^{-1}$ (12) /cm ⁻¹	-4.2	
a _e (Co-C-N)/deg	j 180.0	180.0	<i>w</i> _e x _e (13) /cm⁻¹	3.6	
B _e /cm⁻¹	0.14552	0.143681446(40) ^{b)}	<i>w</i> _e x _e (23) /cm⁻¹	383.7	
<i>B</i> ₀ /cm ⁻¹	0.14567	0.144638234(56) ^{b)}	g ₂₂ /cm⁻¹	96.4	
$B_{0,\Omega=5/2}/cm^{-1}$	0.14559 ^{c)}	0.144443511(53) ^{b)}	ν ₁ (C-N) /cm ⁻¹	2161 F	.C. inactive ^{a)}
<i>D</i> _J /cm ⁻¹	4.49 x10 ⁻⁸	³ 4.99 x10 ^{-8 a)}	<i>v</i> ₂ (Ni-C-N) /cm⁻¹	251	246.1(16) ^{a)}
E _e /Eh -	1612.02691	35	<i>v</i> ₃ (Ni-C) /cm⁻¹	897	501.8(29) ^{a)}
α_1 /cm ⁻¹	0.00052		Zero-Point E. /cm ⁻	⁻¹ 1699	
α_2^{-1} /cm ⁻¹	-0.00072	-0.000712 ^{a)}	ζ_{12} /cm ⁻¹	-0.97	
		-0.00074636(4) ^{b)}	ζ_{23} /cm ⁻¹	-0.23	
$lpha$ $_3$ /cm ⁻¹	0.00060		<i>A</i> -doubling/cm ⁻¹	0.00018	
ω ₁ (C-N) /cm ⁻¹	2199		A _{so} /cm ⁻¹	-613	-415.0(ass.) ^b
∞₂(Ni-C-N) /cm	⁻¹ 254		$\mu_{ m e}$ /D	-7.23	
<i>ω</i> ₃(Ni-C) /cm⁻¹	511		(Expect. valu	ue: -7.56)	
			ε (Renner const.)	0.050	

^a (LIF) Kingston, et al. (2002). ^b (MW) Sheridan, et al. (2003). ^c Difference 0.8 %

Expectation values from MORBID analysis: ⁵⁸NiCN

$(v_1, v_2^{/2}, v_3)$	< <i>r</i> (Ni-C)> / Å	< <i>r</i> (C-N)> / Å	< <i>r</i> (Ni-C) cos(η)> / Å	< <i>r</i> (C-N) cos(τ)> / Å	< <mark>万</mark> > / degrees
(0,0 ⁰ ,0)	1.842	1.171	1.839	1.160	9(5)
(0,1 ⁰ ,0)	1.849	1.171	1.845	1.153	13(5)
(0,2 ⁰ ,0)	1.846	1.171	1.841	1.145	15(8)
(0,0 ⁰ ,1)	1.849	1.171	1.846	1.158	
(1,0 ⁰ ,0)	1.844	1.178	1.841	1.168	
cf.					
Equil. Struct	t. 1.814	1.167			0.0
Exp. $r_{0,\Omega=5/2}$ (Sheridan, et a	<mark>1.8293(1)</mark> al., 2003)	1.1590(2)			0.0

 The <r(C-N)>, ~1.171 Å, a little longer than r_e(C-N), does not change unless the C-N bond is excited. → Physically meaningful, proper quantity.

Again, experimental $r_0(C-N)$ is much smaller than $\langle r(C-N) \rangle_0$!

Exp. model is inadequate !!

Explicit treatment of large amplitude bending motion is necessary.

Now we can make quantitative arguments....

i) Floppiness in bending motion

 Qualitatively from the C-N bond length: FeNC >> CoCN ≈ NiCN

(*r*_e/Å) **1.182 1.168 1.167**

- Bending force constant (aJ⁻¹) from the 3-D PES FeNC >> CoCN > NiCN cf. FeCO 0.036 0.151 0.180 0.364
- Bending potential: FeNC >> CoCN > NiCN

ii) CN bond lengths: MORBID Expectation value

Ro-vibrationally averaged MORBID structure

	FeNC	CoCN	NiCN
<i>r</i> _e (C-N) /Å	1.182	1.168	1.166
<i>r</i> ₀(C-N) /Å	1.187	1.172	1.171
< p > / deg.	13(7)	8(5)	9(5)

- Both $r_{e}(C-N)$ and $r_{e}(C-N)$ fall inside of the normal C-N bond length 1.16-1.19 Å.
- MORBID expectation value of the bond length r_0 :

a little longer than the equilibrium bond length $r_{\rm e}$. keeps almost constant unless the associated bond is vibrationally excited. \rightarrow physically sound bond length to characterize a chemical bond

- even for molecules showing large amplitude bending motion.
- Although the equilibrium structure is linear, the ro-vibrationally averaged structure is bent.

This is our answer to the longstanding debate : How to treat a large amplitude bending motion.

Summary: Too-short CN bond lengths

C-N Bond length / Å					
	FeNC	CoCN	NiCN		
Obs. (r ₀)	1.03(8)	1.131	1.159		
Calc. (r _e)	1.182	1.168	1.166		
(r ₀)	1.187	1.172	1.171		
Difference	-0.157	-0.041	-0.012		
in <i>r</i> ₀ (%)	-13.2	-3.5	-1.0		

Then, **WHAT** does the experimentally derived *r*₀ values mean ? **No physical meaning** !!!

• The difference between experimental and predicted values indicates the *existence of large-amplitude bending motion*.

• **Conventional method to derive** *r*₀ **value is inadequate** for these molecules showing large-amplitude bending motion,

Why the Conventional method to derive r_0 value is inadequate?

Observe B_0 's for isotopologues.

- \rightarrow derive r_0 's, assuming <u>linear</u> structure in the moment of inertia calcs.
- \rightarrow interpret the thus derived r_0 's as the projection average onto the *a*-axis in the bending motion, because B_0 's are employed.

However, NO average over bending motion is taken into account in this procedure !

Now, the turn is in the experimental side.

Explicit treatment of large amplitude bending motion is necessary.

We thank **Dr. Yoshio Tanaka** for proving us their **CPU resources at Grid Research Center, AIST**, Japan.

Part of this research was supported by the program **Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency**, and by the **Deutsche Forschungsgemeinschaft** and the **Fonds der Chemischen Industrie**.

References;

FeNC: T. Hirano, R. Okuda, U. Ngashima, V. Špirko, P. Jensen, *J. Mol. Spectrosc.*, 236 (2006) 234-247
 CoCN: T. Hirano, R. Okuda, U. Nagashima, P. Jensen, *Mol. Phys.* 105 (2007) 599-611.

NICN: T. Hirano, R. Okuda, U. Nagashima, P. Jensen, Chem. Phys., 346 (2008) 13-12.

Every linear poly-atomic (more than diatomic) molecule is *bent*, even when the equilibrium structure is *linear*.

Suppose the rovibronic wavefuction be described by a **two**-dimensional harmonic-oscillator in bending and rotational normal coordinates, q_a and q_b .

When decoupled from rotation about the molecular axis, the averaged angle for bending motion becomes as

 $\langle \overline{\rho} \rangle \approx \langle \sqrt{q_{a}^{2}} + q_{b}^{2} \rangle > 0$, $\langle \overline{\rho} \rangle$ is the bond angle supplement.