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Computer programs:

RENNER:

Triatomic molecule in Renner-degenerate states. Only one linear 

geometry considered.

DR (Double Renner): 

Triatomic molecule in Renner-degenerate states. Two linear 

geometries considered.
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Variational calculation:

Construct matrix representation of the total Hamiltonian in terms of

suitable basis functions

• Morse-oscillator (or Morse-oscillator–like) functions for stretching

motion.

• Numerical bending functions generated by Numerov-Cooley 

integration

• Coupled (rigid rotor)-(electron spin) basis functions for the rotation

(                  )

Diagonalize matrix numerically – however the matrix blocks will 

become very large ..... What should we do?

JSN



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Contract!

Ignore end-over-end rotation

and calculate the eigenenergies

and wavefunctions for a 

hypothetical molecule that

rotates about the a axis only.

Use (a smaller number of) the

resulting eigenfunctions as basis

functions for the final problem, 

including end-over-end rotation.

Principle of the

contraction in DR
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Total rovibronic wavefunction:

Contracted basis function

Stretch Stretch

Bend Elec + Rot +  e-spin Two electronic states
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X 2A1
~

A 2B1
~

Electronic, rotational, e-spin:

results from prediagonalization

of Renner interaction at given

value of the bending angle

CH2
+
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Rotation, e-spin:

Symmetrized, „parity basis“

Unsymmetrized, coupled rotation/e-spin
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 Ab initio potential energy functions from W. P. Kraemer, Per 

Jensen, and P. R. Bunker, Can. J. Phys. 72, 871-878 (1994)

 One parameter of the potential energy function has been

adjusted to obtain agreement with experiment for the 3 

vibrational term value in the X 2A1 state.

CH2 Experiment

 X 2A1 3 band (Ka = 0  0 and 1  1) measured by M. 

Rösslein, C. M. Gabrys, M.-F. Jagod, and T. Oka, J. Mol. 

Spectrosc. 153, 738-740 (1992).

 Photoelectron spectrum of CH2; S. Willitsch and F. Merkt: J. 

Chem. Phys. 118, 2235-2241 (2003).

 A 2B1   X 2A1 electronic spectrum; J. L. Gottfried and T. 

Oka, J. Chem. Phys. 121, 11527 (2004) 

~

~

+

~ ~

CH2 Calculations
+

~
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CH2

+

X 2A1

~

N ≤ 3

J ≤ 7/2

S. Willitsch and F. Merkt: J. Chem. Phys.

118, 2235-2241 (2003):

„... calculated positions of Ka=0,1 levels are

in very good agreement, whereas the Ka=2 levels

are predicted systematically at about 5 cm-1 lower

wave numbers....“
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CH2

+

A 2B1

~

N ≤ 3

J ≤ 7/2
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CH2
+ X 2A1

~
N ≤ 10     T = 300 K

2  band
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CH2
+ X 2A1

~
N ≤ 10     T = 300 K

2  band
1/3 bands

Lines observed by Oka
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~ ~

J. L. Gottfried and T. Oka, 

J. Chem. Phys. 121, 11527 (2004)

CH2
+

X 2A1A 2B1
~ ~

A(0,4,0)0X(0,0,0)1

o-c =  −18 cm-1

A(0,3,0)1X(0,0,0)0

o-c =  −53 cm-1

~ ~
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Application of DR: MgCN/MgNC

A 2P
~

MgNC MgCN

Ab initio calculation:

MR-SDCI(+Q)/[TZ3P+f (Mg), aug-cc-pVQZ (N and C)]

Mg

NC
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𝑓 𝑟, 𝜏 =  
0

∞
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rot,e,es
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 =  for the lower (1 2A´´ for MgNC/MgCN) state

 =  for the upper (2 2A´ for MgNC/MgCN) state

Probability density functions
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MgNC

MgCN

Renner-driven

isomerization
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Application of DR: HOO/OOH

ab initio calculations: 

• Program: MOLPRO 2002.6

• Method: Core-valence MR-SDCI+Q/[aug-cc-pCVQZ (O), cc-pVQZ

(H)]

• Basis set for hydrogen: Dunning et al.’s correlation consistent 

valence quadruple zeta basis set (cc-pVQZ),(6s,3p,2d,1f)/ 

[4s,3p,2d,1f]

• Basis set for oxygen: Dunning et al.’s augmented correlation 

consistent polarized core-valence valence quadruple zeta basis 

set (aug-cc-pCVQZ),(16s,10p,6d,4f,2g)/[9s,8p,6d,4f,2g]

X 2A´´ and A 2A´ states
~ ~
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HOO minimum energy paths
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Simulation of HOO A 2A´ X 2A´´ absorption spectrum
~ ~

N ≤ 10

J ≤ 19/2

T = 300K
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Application of RENNER: SbH2

ab initio calculations:

• all-electron complete active space self-

consistent field (CASSCF) method, 

followed by a multireference

• configuration interaction (MRCI) 

treatment

• Hydrogen: aug-cc-pV5Z basis set

• Antimony: Sapporo-DKH3-QZP-2012 

basis set 

• non-relativistic and Douglas-Kroll-Hess 

(DKH) Hamiltonians
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~ ~
Simulation of 121SbH2 X 2B1 absorption spectrum

N ≤ 10 J ≤ 19/2T = 300K

~
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[19] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A. 107 (2003)

4244-4249; matrix isolation infrared spectroscopy.

Present work

Present work

Present work
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Simulation of 121SbH2 A 2A1  X 2B1 absorption spectrum

N ≤ 10 J ≤ 19/2T = 300K

~~
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[20] N. Basco and K. K. Lee, Spectroscopy Letters 1 (1968) 13-15; flash

photolysis of stibine (SbH3).
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Energy clusters: 121SbH2 X 2B1 vibrational ground state
~

A1 (red)

A2 (black) 

B1 (blue)

B2 (green)
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Energy clusters: 121SbH2 X 2B1 1/3 states
~

A1 (red)

A2 (black) 

B1 (blue)

B2 (green)
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Experiment:

T. Ni, S. Yu, X. Ma and F. Kong, 

Chem. Phys. Lett. 128 (1986) 270-273.

ArF laser photolysis of SbH3.

Red: Resolution 3 Å

Blue: Resolution 12 Å

121SbH2 and 123SbH2

A 2A1  X 2B1 emission

spectrum

N ≤ 25 J ≤ 49/2

T = 1200K

Simulation:

~ ~
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