

COMPUTATIONAL SPECTROSCOPY OF NCS IN THE RENNER-DEGENERATE ELECTRONIC STATE \tilde{X} ² Π

1

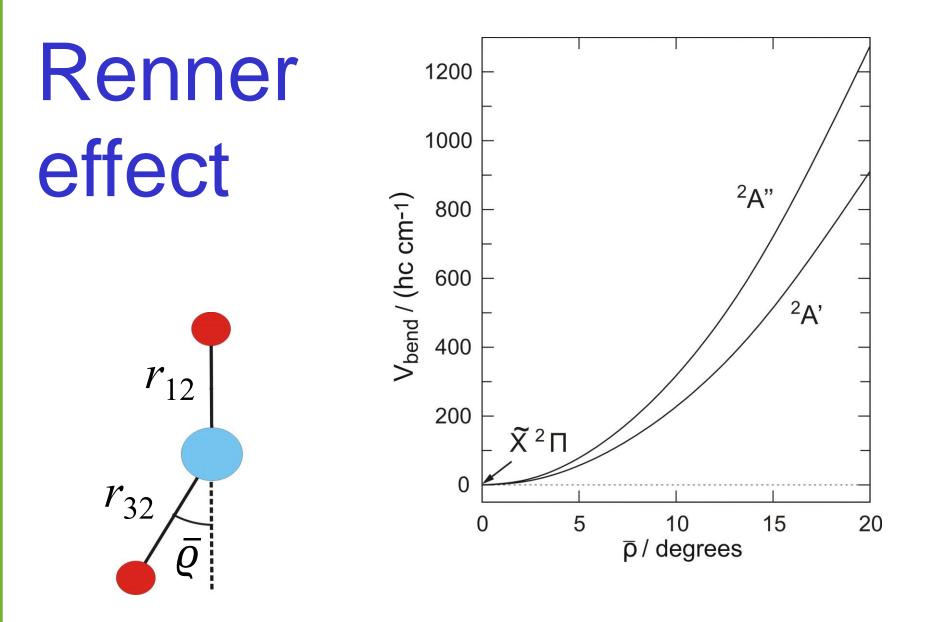
JENS FREUND SARAH CAROLL GALLEGUILLOS KEMPF PER JENSEN

BERGISCHE UNIVERSITÄT WUPPERTAL

UMPEI NAGASHIMA

TSUNEO HIRANO

Why NCS?


- Complicated rovibronic spectrum due to:
 - Renner effect two lowest electronic states degenerate at linear geometries
 - All-pervading resonances: $2\omega_2 \approx \omega_3$
 - Spin-orbit coupling constant $A_{SO} \approx \omega_2$

Rovibronic spectrum much less experimentally characterized than that of NCO.

First observation of NCS: R.N. Dixon, D.A. Ramsay, *Canadian J. Phys.* **46** (1968) 2619–2631.

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Ab initio calculation

- Program MOLPRO
- Method & basis set: core-valence, full-valence MRSDCI+Q/[aug-cc-pCVQZ(S, C, N)]
- Spin-orbit coupling constant $A_{SO} = -342.2 \text{ cm}^{-1}$
- Renner parameter $\varepsilon = [(\omega_{2,A'})^2 (\omega_{2,A''})^2]/[(\omega_{2,A'})^2 + (\omega_{2,A''})^2] = -0.1653.$

RENNER calculation

- Variational program RENNER
- Parameterized representation of the potential energy function

$$V_{\pm}(\Delta r_{12}^{(\text{ref})}, \Delta r_{32}^{(\text{ref})}, \bar{\rho}) = \sum_{jkl} G_{jkl}^{(\pm)} \left(y_1^{(\text{ref})} \right)^j \left(y_3^{(\text{ref})} \right)^k (1 - \cos \bar{\rho})^l$$

where the '-' ('+') refers to the lower (upper) component $1^{2}A'$ ($1^{2}A''$), and $G_{ikl}^{(\pm)}$ are expansion coefficients. We have

$$y_i^{(\text{ref})} = 1 - \exp(-a_i \Delta r_{i2}^{(\text{ref})})$$

where i = 1 or 3. The function $y_1^{(\text{ref})}$ is associated with the C–N bond, whereas $y_3^{(\text{ref})}$ is associated with the S–C bond.

• Parameter values obtained by least-squares fitting.

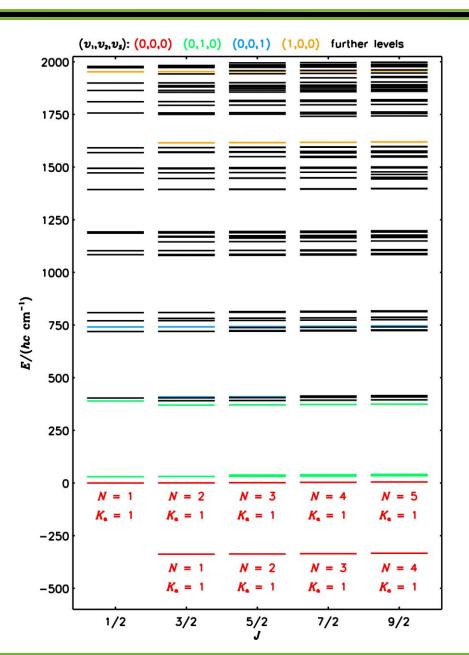
Table 1: The fitted potential energy surface parameters for the electronic $^2A'$ and $^2A''$ states of NCS (Eq. (1))

Parameter values

Absolute energy, n	nolecular parameters	s, standard deviation				
$V_{\rm e}$ $^{\rm a}/{\rm cm}^{-1}$	-186165.29(14) ^b					
$r_{12}^{(\mathrm{ref})}/\mathrm{\AA}$	1.1776970(60)				
$r_{32}^{(\mathrm{ref})}/\mathrm{\AA}$	1.633467(1	0)				
$a_1/{ m \AA}^{-1}$	2.433 ^c					
$a_3/{ m \AA}^{-1}$	1.885					
Std. dev. $^{\rm d}/{\rm cm}^{-1}$	1.87					
Parameters of the	pure stretching pote	ential energy				
$G_{200}^{(\pm)}/{ m cm}^{-1}$	63906.4(88)					
$G_{020}^{(\pm)}/{\rm cm}^{-1}$	33422(32)					
$G_{110}^{(\pm)}/{\rm cm}^{-1}$	14842(30)					
$G_{300}^{(\pm)}/{ m cm}^{-1}$	-1252(68)					
$G_{210}^{(\pm)}/{ m cm}^{-1}$	13427(169)					
$G_{120}^{(\pm)}/{ m cm}^{-1}$	-9769(332)					
$G_{040}^{(\pm)}/{ m cm}^{-1}$	17450(1326)					
$G_{310}^{(\pm)}/{ m cm}^{-1}$	37538(2053)					
$G_{220}^{(\pm)}/{ m cm}^{-1}$	39166(4281)					
	$^{2}A^{\prime}~(\sigma=-)$	$^{2}A^{\prime\prime}~(\sigma=+)$				
	pure bending potent	tial energy				
$G_{001}^{(\sigma)}/{ m cm^{-1}}$	15004(12)	20981(12)				
$G_{002}^{(\sigma)}/{ m cm}^{-1}$	2196(199)	5078(199)				
$G_{003}^{(\sigma)}/{ m cm}^{-1}$	20000	20000				
Parameters of the stretch-bend potential energy						
$G_{101}^{(\sigma)}/{\rm cm}^{-1}$	-7843(34)	-10806(34)				
$G_{011}^{(\sigma)}/{ m cm}^{-1}$	-13898(183)	-21067(172)				
$G_{012}^{(\sigma)}/{ m cm}^{-1}$	-12869(2944)	-20767(2944)				
$G_{201}^{(\sigma)}/{\rm cm}^{-1}$	3132(358)	-3758(325)				
$G_{021}^{(\sigma)}/{\rm cm}^{-1}$	4830(518)					
$G_{111}^{(\sigma)}/{ m cm}^{-1}$	-7936(892)	3123(892)				
$G_{031}^{(\sigma)}/{ m cm}^{-1}$	15031(4736)					

^a Absolute energy at the minimum of the ${}^{2}A'$ potential energy surface.

^b The values in parentheses are standard errors in units of the last digit given.


^c Parameters without standard errors were held fixed during the fitting process.

^d Standard deviation of the fitting.

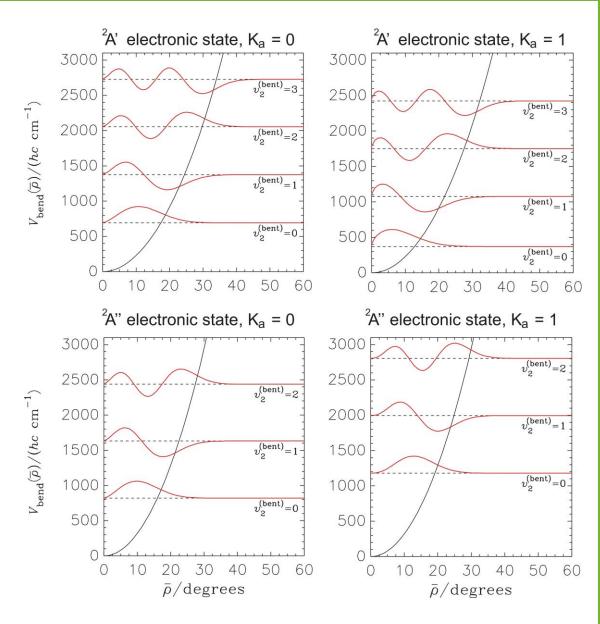
SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Term values

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Table 2: Calculated rovibronic term values (in cm⁻¹) for selected $(v_1, v_2^{\text{lin}}, v_3)$ states of \tilde{X} ² Π NCS.^{*a*}

$_{J}$	$(0,0,0)$ $^{2}\Pi_{3/2}$		$(0,0,0)$ $^{2}\Pi_{1/2}$		$(0,1,0) \ \mu^2 \Sigma_{1/2}$		$(0,1,0) \kappa^2 \Sigma_{1/2}$		$(0,1,0)$ $^{2}\Delta_{5/2}$	
	e states	f states	e states	f states	e states	f states	e states	f states	e states	f states
1/2			0.000	0.000	29.837	29,977	389.581	389.443		
3/2	-337.867	-337.867	0.612	0.612	30,379	30,659	390,260	389.986		
5/2	-336.849	-336.849	1.632	1.632	31.329	31.749	391.346	390.935	37.724	37.724
7/2	-335.423	-335,423	3.060	3.060	32.687	33,248	392.837	392.292	39,150	39,150
9/2		-333.589	4.896	4.895	34.453	35.154	394.733	394.057	40.984	40.984
J	(0, 1, 0)	$(0,1,0) \ ^{2}\Delta_{3/2} \qquad (0,2,0) \ \mu^{2}\Pi_{3/2}$		$(0,2,0) \kappa^2 \Pi_{3/2}$		$(0,2,0) \mu^2 \Pi_{1/2}$		$(0,2,0) \kappa^2 \Pi_{1/2}$		
100	e states	f states	e states	f states	e states	f states	e states	f states	e states	f states
1/2							403,576	403,576	770.302	770.301
3/2	370.084	370.084	390.771	390.771	781.844	781.844	404.191	404.190	770.914	770.913
5/2	371.104	371.104	391.794	391.792	782.871	782.871	405.216	405.214	771.934	771.933
7/2	372.533	372.533	393.228	393.222	784.308	784.308	406.650	406.648	773.363	773.362
9/2	374.370	374.370	395.072	395.061	786.156	786.156	408.494	408.491	775.199	775.198
J	(0,2,0) ² Φ _{7/2}		(0,2,0) ² Φ _{5/2}		(0,0,1) ² П _{3/2}		$(0,0,1)$ $^{2}\Pi_{1/2}$		$(0,0,2)$ $^{2}\Pi_{3/2}$	
	e states	f states	e states	f states	e states	f states		f states	e states	f states
1/2							740.930	740.930		
3/2					408.526	408.526	741.539	741.539	1144.922	1144.922
5/2			737.706	737.706	409.544	409.544	742.554	742.555	1145.932	1145.932
7/2	413.120	413.120	739.139	739.139	410.969	410.969	743.976	743.976	1147.346	1147.346
9/2	414.960	414.960	740.983	740.983	412.802	412.801	745.803	745.804	1149.165	1149.165
J	$(0,0,2) \ ^2\Pi_{1/2}$ $(1,0,0) \ ^2\Pi_{1/2}$		$^{2}\Pi_{3/2}$	$(1,0,0)$ $^{2}\Pi_{1/2}$		$(1,0,1)$ $^{2}\Pi_{3/2}$		$(1,0,1)$ $^{2}\Pi_{1/2}$		
	e states	f states	e states	f states	e states	f states	1923-1924 (0/2		-/
1/2	1472.402	1472.402			1952.424	1952.423			2703.773	2703.773
3/2	1473.011	1473.011	1615.131	1615.131	1953.033	1953.033	2373.969	2373.969	2704.381	2704.381
5/2	1474.027	1474.026	1616.148	1616.148	1954.048	1954.048	2374.962	2374.964	2705.394	2705.393
7/2	1475.448	1475.448	1617.571	1617.571	1955.470	1955.470	2376.352	2376.356	2706.811	2706.811
9/2	1477.276	1477.275	1619,401	1619,401	1957.298	1957.297	2378,139	2378.147	2708.634	2708.633


^{*a*}An *e* state has the parity $+(-1)^{J-1/2}$ and an *f* state has the parity $-(-1)^{J-1/2}$ [27, 30].

Term values

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Bending wavefunctions

Comparison with experiment

Table 3: Vibrational wavenumbers ω_i (in cm⁻¹) of NCS, calculated by RENNER for the ${}^{2}A'$ and ${}^{2}A''$ electronic states. Some previous theoretical predictions are also shown for comparison.

	ω_1	$\omega_2(A')$	$\omega_2(A'')$	ω_2^b	ω_3	$\Delta_{\rm rel}(\omega_1)^a$	$\Delta_{\rm rel}(\omega_2)^a$	$\Delta_{\rm rel}(\omega_3)^a$
Exp. [8]	~ 1950	_	_	~ 375	~ 760			
Exp. [7]	_	_	_	375.96	735.41			
RENNER	1951.4	316.8	440.4	378.6	743.5	0.07	0.70	1.10
Perturbation ^c	1994.7	349.7	413.2	381.5	742.3	2.29	1.47	0.94
Optimised MRCI/								
spdfg cc-pVQZ [31]	1987.6	343.4	408.3	375.8	743.4	1.93	-0.04	1.09
Optimised MRCI/								
spdf cc-pVQZ [20]	2008.5	348.6	409.4	379	748.4	3.00	0.81	1.77

^a $\Delta_{\rm rel} = 100 \times (\omega^{\rm (calc)} - \omega^{\rm (exp)})/\omega^{\rm (exp)}$ is the percentage deviation from the respective experimental value of $\omega_1 \approx 1950 \, {\rm cm}^{-1}$, $\omega_2 = 375.96 \, {\rm cm}^{-1}$, and $\omega_3 = 735.41 \, {\rm cm}^{-1}$. ^b Average value of $\omega_2(A')$ and $\omega_2(A'')$. ^c Quoted from Table 3 of Ref. [25]. SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Comparison with experiment

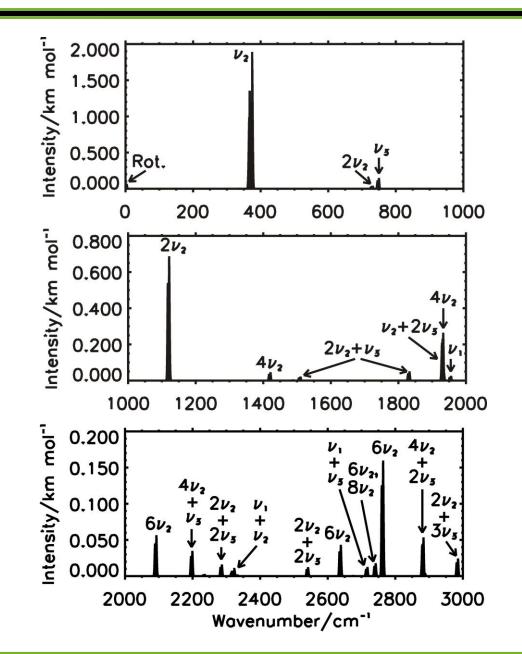
Table 4: Rotational constants B_{eff} of NCS for various vibrational states (v_1, v_2, v_3) , calculated by RENNER. Averaged values for those in its electronic states ${}^{2}A'$ and ${}^{2}A''$ are listed. For comparison, literature values are also quoted.

(v_1, v_2, v_3)	K_a	$B_{\rm eff}/{\rm cm}^{-1}$		$\Delta^a_{\rm rel}/\%$
(0,0,0)	П	0.20384	Present Work ^b	
		$0.2039(1)^{c}$	Exp. ^d [6]	е
		0.20369506(2)	Exp. [11]	0.07
		0.203695016(5)	Exp. [12]	0.07
		0.203694972(8)	Exp. [10]	0.07
		0.2036(1)	Exp. [5]	0.12
		0.206(1)	Exp. [6]	1.05
		0.20277	Calc. ^f [19]	0.53
(0,1,0)	Σ	0.20405	Present Work ^b	
		0.2033(10)	Exp. [7]	е
		0.20331	Calc. ^f [19]	0.36
(0,1,0)	Δ	0.20390	Present Work ^b	
A 9 8 8		0.20491(36)	Exp. [7]	0.49
		0.20331	Calc. ^f [19]	0.29
(0,2,0)	П	0.20480	Present Work ^b	
A. 1. 1. 1.		0.2084(26)	Exp. [7]	1.73
		0.20385	Calc. ^f [19]	0.47
(0,0,1)	П	0.20283	Present Work ^b	
		0.1984(30)	Exp. [7]	2.23
		0.210(3)	Exp. [5]	3.42
		0.20178	Calc. ^f [19]	0.52
(1,0,0)	П	0.20322	Present Work ^b	
and the second se		0.204	Exp. [5]	0.38
		0.20231	Cal. ^f [19]	0.45

^a $\Delta_{\rm rel} = 100 \times |B_{\rm eff}^{\rm (calc)} - B_{\rm eff}^{\rm (lit)}|/B_{\rm eff}^{\rm (lit)}$. ^b Average effective rotational constant calculated by RENNER.

^c The values in parentheses are standard errors in units of the last digit given.

^d From Ref. [6]. Fit to the data of Ref. [5] with an alternative rotational energy model.


^e Theoretical value from the present work is in agreement with the literature value to within the quoted error margins.

^f From Ref. [19]. Obtained from CCSD(T)/cc-pVQZ equilibrium value with CCSD(T)/TZ2P vibration-rotation interaction constants.

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

Simulated spectra

Thank you for your attention!

13

• We hope that our new predictions will stimulate experimental work on NCS