Which do you believe in ?

e.g. NiCN r_0 (C-N)

- Spectroscopy (Exp.) 1.1590(2) Å (MW: Sheridan, et al. 2003)
- Computational 1.171 Å (MORBID: Hirano, et al. 2007) Molecular Spectroscopy

Which is the more **accurate** and **physically meaningful** number?

Large Amplitude Bending Motion: Approach from Computational Molecular Spectroscopy

Ochanomizu Univ.*, AIST-Nanosystem**, Wuppertal Univ. (Germany) †

Tsuneo Hirano,* ** Umpei Nagashima ,** Per Jensen †

T. Hirano

U. Nagashima

P. Jensen

Computational Molecular Spectroscopy

Computational Molecular Spectroscopy

- ab Initio Potential Energy Surface (PES)
- Solve ro-vibrational Schrödinger equation.
- Molecular constants as expectation values of the wavefunction
- Simulation of ro-vibrational spectrum

Experimental Molecular Spectroscopy

- Observation of ro-vibrational spectrum
- Analyses of the spectrum \rightarrow Molecular structure and constants
- Inference of the Potential Energy Surface

Present status of Computational Molecular Spectroscopy

We used to be helpers for spectroscopy.

← Low computational accuracy and only qualitative suggestions

Now:

X² ²Π NCS (2009 Hirano, Nagashima, and Jensen) Core-valence MR-SDCI/[aCV(Q+d)Z (S), aCVQZ (C,N)]

	<i>B</i> ₀ /MHz(Exp.: Amano et al ^a)	B ₀ /MHz(Calc.)	Difference
NC ³² S	6106.6 <mark>2195</mark> (16)	6106.47	-0.002%
NC ³⁴ S	5962.8 <mark>57</mark> (52)	5962.77	-0.001%

a) Maeda, Habara, Amano, Mol. Phys., **105**, 477-495 (2007)

 $B_{e} = 6108.9 \text{ MHz}, D_{J} = 0.00171 \text{ MHz}$ $r_{e}(\text{N-C}) = 1.1777 \text{ Å}, r_{e}(\text{C-S}) = 1.6338 \text{ Å}$ $\omega_{1} = 1998 \text{ cm}^{-1}, \omega_{2} = 352 \text{ cm}^{-1}, \omega_{3} = 737 \text{ cm}^{-1}$ Renner const $\varepsilon = -0.158$ $A_{SO} = -341 \text{ cm}^{-1}$ $\mu_{e} = 2.496 \text{ D} \dots$ Molecular Spectroscopy is the most accurate science, backed with laser wavelength accuracy. e.g., NiCN $r_0(C\equiv N) = 1.1590(2)$ Å (MW: Sheridan, *et al.* 2003)

However, it is not all-mighty

Weak Point:

• Cannot treat large amplitude bending motion properly.

Because the analysis methods of analyses are generally based on perturbation theory.

For example,

```
1) Too short C≡N bond length (FeNC, CoCN, …).
```

2) If equilibrium structure is linear, the

ro-vibrationally averaged structure should also be linear (belief).

3) Coupling between bending and stretching modes

(due to 3rd order asymmetric PES-term)

Cases where bond elongates significantly with bending

(FeCO, HCO⁺, CaNC)

Jobs for Computational Molecular Spectroscopy (complementary)

Large Amplitude Bending Motion: too short C≡N bond length

With Per Jensen (Wuppertal, Germany)

The effects of large amplitude bending motion gave rise to a longstanding debate:

CsOH: D.M. Lide, R.L. Kuczkowski, J. Chem. Phys., 46, 4768 (1967).
D.M. Lide, C. Matsumura, J. Chem. Phys., 50, 3080 (1969)
RbOH: C. Matsumura, D.R. Lide, J. Chem. Phys., 50, 71 (1969)

 r_c : M. Nakata, K. Kuchitsu, et al., J. Mol. Spec., 83,118 (1980)OCCl₂J. Mol. Spec., 86,241 (1981)OCCl₂J. Mol. Struc., 320 ,179 (1994)OCS, etc.

r_m⁽²⁾: J.K.G. Watson, *et al.*, *J. Mol. Spec.*, **196**,102 (1999) K.A. Walker, et al., *J. Mol. Spec.*, **209**, 178 (2001) Theory AINC/AICN, GaNC/GaCN, InNC/InCN

However, mostly forgotten in recent experimental studies.

N=C ligand (triple bond) \rightarrow Strong and of almost constant bond length: Should be 1.16 ~ 1.19 Å Strange !

Our calculation level: MR-SDCI+Q+ E_{rel} with error ±1 % \rightarrow Again Strange !

 $B_{\rm e} = 0.14250 \text{ cm}^{-1}, B_{\rm 0} = 0.14278 \text{ cm}^{-1}$

Fe--NC lonic bond \rightarrow Large amplitude bending motion Experimental r_0 (C-N) is too short !

Fe¹⁴N¹²C X $^{6}\Delta$ linear equilibrium structure

Three dimensional PES was calculated at the MR-SDCI +Q + E_{rel} level.

J. Mol. Spectrosc., 236, 234 (2006)

Exp. $B_0 = 0.1452 (2) \text{ cm}^{-1}$, Perturbation $B_0 = 0.1434 \text{ cm}^{-1}$ (1.2% difference) It means something is wrong in deriving $r_0(\text{CN}) = 1.03(8) \text{ Å}$ /

$(v_1, v_2^{l^2}, v_3)$	< <i>r</i> (Fe-N) >	< <i>r</i> (CN) >	<r(fe-n) cos="" η=""></r(fe-n)>	<r(cn) cos="" τ=""></r(cn)>	< \$\overlimits > / deg
(0, 0 ⁰ , 0)	1.967	1.187	1.964	1.164	13(7)
(0, <mark>1</mark> ^{1e,f} , 0)	1.971	1.187	1.965	1.141	20(7)
(0, <mark>2</mark> 0, 0)	1.970	1.188	1.960	1.113	25(12)
(1, 0 ⁰ , 0)	1.969	1.195	1.965	1.169	13(7)
(0, 0 ⁰ , 1)	1.976	1.187	1.972	1.159	13(7)
Equil. Struct.	r _e 1.935	1.182			0
Exp. r ₀	2.01(5)	1.03(8)			0

Similar calculations have been done for

FeCN:	<i>J. Mol. Spectrosc.</i> , 243 , 267 (2007)
CoCN;	<i>Mol. Phys.</i> , 105 , 599 (2007)
NiCN;	<i>J. Mol. Spectrosc.</i> , 250 , 33 (2008)

In summary, …

C-N bond lengths

C-N Bond length / Å							
	FeNC	FeCN	CoCN	NiCN			
Obs. (r ₀)	1.03(8)	?	1.131	1.159			
Calc. (r _e)	1.182	1.168	1.168	1.166			
(r ₀)	1.187	1.172	1.172	1.171			
Difference	-0.15	?	-0.041	-0.012			
(%)	-12.9	?	-3.4	-1.0			

Then, **WHAT** do the experimentally obtained r_0 values mean ?

The difference between experimental and predicted values indicates the existence of large-amplitude bending motion.

However, the experimentally derived r_0 value, in this case, has no physical meaning for the understanding of the chemical bond.

We need to explore a new method to derive physically-sound, and meaningful r_0 values from experiments for this type of floppy molecule !!!

Which do you believe in ?

e.g. NiCN r_0 (C-N)

- Spectroscopy (Exp.) 1.1590(2) Å (MW: Sheridan, et al. 2003)
- Computational 1.171 Å (MORBID: Hirano, et al. 2007) Molecular Spectroscopy

Which is more accurate and more physically meaningful number?

Actually, 1.160 Å is an averaged z-axis projection (MORBID)

Large Amplitude Bending Motion: r_0 -structure is not linear

With Per Jensen (Wuppertal, Germany)

How do we distinguish linear and quasi-linear ?

• One-dimensional Harmonic Oscillator :

Maximum of wavefunction should be at the Origin. (imprinted with text book)

- However, in an experiment, vibration and rotation cannot separately be observed !!! At least, should be treated as 2-dimensional oscillator.
 - Maximum of wavefunction (in pink) is not at the origin in the plot for the bending angle. (One-dimensional expression)

*r*₀-structure of linear molecule (Linear at equilibrium structure)

Equilibrium str	ructure	<ō> (δō)	
Linear	3 Φ CoCN 2 Δ NiCN 6 Δ FeCN 6 Δ FeNC 1 Σ CsOH	8° (5°) 9° (5°) 10° (5°) 13° (7°) 17° (9°)	γ ₀ ≈ −1
Quasi-linear (45.8°)	⁶ ∆ FeOH	39° (14°)	$\gamma_0~\approx 0.10$
Bent (65.1°)	² A' ZnOH	64° (10°)	$\gamma_0~\approx 0.84$

We have PES from the beginning. → No problem. But, how can experimental people distinguish ? Linear or quasi-linear ?

$$\gamma_0 = 1 - 4 \times \frac{E(v_2 = |\ell_2| = 1) - E(0)}{E(v_2 = 2, |\ell_2| = 0) - E(0)}$$

Yamada-Winnewisser index J. Mol. Struct. **798**, 1 (2006)

Large Amplitude Bending Motion: Elongation with Bending

With Per Jensen (Wuppertal, Germany)

Large Amplitude bending Motion: Elongation with Bending (FeCO, HCO⁺, CaNC, ...)

In some molecules, bond significantly elongates on bending.

 lonic bond (²Σ⁺ CaNC, ²Σ⁺ MgNC), due to the increasing difficulty in transferring electron to the ligand.

Difficulty: Steimle et al., Astrophys. J., 410 L49(1993).

Difficulty: Fukushima et al., Bunshikagaku-Toronkai, (2011)

• Coordinate-covalent bond (${}^{3}\Sigma^{-}$ FeCO, ${}^{1}\Sigma^{+}$ H⁺CO),

Conventional molecular spectroscopy cannot handle these features.

Bending Motion

Bonding type

- Covalent bond: Small amplitude bending motion, and normal.
- lonic bond: Large amplitude bending motion, but normal.
- Coordinate-covalent bond:

Large amplitude bending motion with significant elongation with bending.

FeCO: [Exp. and Perturbation] vs. [MORBID]?

3D PES: [MR-SDCI + Q] _DK3

	$^{3}\Sigma^{-}$ (coordinate-covalent bond)			$5\Sigma^{-}$ (ionic b	oond)	
	MORBID	Perturb.	Exp.	MORBID	Perturb.	
B_0 / MHz	4381.5	4366.2	4363.88342(40) ^a	4028.0	4016.9	
Error (%)	0.40	0.05				
Why is	s the error(%	6) differen	t although the same	3D PES is emp	oloyed?	
Note t	hat Perturb. a	ind Exp. giv	e quite similar values i	n disagreement wi	th the MORBID resu	ult.
α_1 / cm-1	0.000757	0.00074	7 0.000728 ^b	0.000440	0.000693	
$lpha_2$ / cm-1	<u>0.000230</u>	-0.000379	<u>-0.000350</u> b	<u>-0.000157</u>	-0.000654	
$lpha_3$ / cm-1	0.000627	0.00068	6 0.000674 ^b	0.000244	0.000596	
³ Σ -: Why is the sign of α_2 from MORBID different from those from Perturb. and Exp. ?						
Note t	hat Perturb. a	and Exp. giv	ve quite similar values,	while MORBID do	bes not.	
	And, α_2 of ⁵ Σ	²⁻ state is a	normal, negative value	for both MORBID	and Perturb.	

a) Tanaka et al. (1997) b) lkeda, Tanaka et al. (2007)

Positive $\alpha_2 \rightarrow B_{eff}(0,0,0) > B_{eff}(0,1,0)$ against common sense !

... continued

Why?

Force constants $f_{r(Fe-C),r(C-O),\angle(Fe-C-O)}$					
	3 <u>∑</u> -	5 <u>></u> -			
<i>f</i> ₀₀₂ /aJ	0.362	0.180			
f₁₀₂ /aJ Å⁻¹	-0.430	-0.060			
Fe-C bond	coordinate- covalent	ionic			

• When *f*₁₀₂ is large, the Fe-C bond elongates significantly upon bending.

Thus, elongation of Fe-C bond upon bending is significant in the ${}^{3}\Sigma^{-}$ state, but normal in the ${}^{5}\Sigma^{-}$ state.

... continued

 Why does the Fe-C bond elongate significantly upon bending in the ³Σ⁻ state? Because, the Fe 4s comes in off-centered position about the axis of σ_{CO} orbital, resulting in the smaller overlap (i.e., weaker bond) between Fe 4s and σ_{CO}. (cf. 10σ NO (natural orbital) contributing to the covalency of the Fe-C bond).

Thus, the Fe-C bond, coordinate-covalent, in the ³Σ⁻ state elongates significantly upon bending.
 While, the Fe-C bond, ionic, in the ⁵Σ⁻ state does not, and behaves normally.

- MORBID includes this effect in the large amplitude bending motion correctly.
- Perturbation and Exp. are based on the small amplitude bending motion around the equilibrium structure. \rightarrow Incorrect description of bending motion.

Differences in MORBID, Perturb, and Exp.

	MORBID	Perturb	Exp.
α_1, α_3	similar	similar	similar
α_2 (bending)	<mark>positive</mark> (0.000230)	negative (-0.000379)	negative (-0.000350)
Region of PES employed	whole	near-equilibrium.	near-equilibrium
Fe-C elongation (bending)	0	Х	X

What to do?

Term value of rotation; $F_{v}(J) = B_{v} (J(J+1) + l^{2}) - D_{v} (J(J+1) - l^{2})^{2} + \dots$ (1) α_{2} taken to be $B_{0} - B_{(v-bend = 1)}$ in experimental analysis (2) Higher order expansion to include f_{102} ;

$$B_{v} = B_{e} - \sum \alpha_{i} u_{i} + \sum \gamma_{ij} u_{i} u_{j} + \sum \delta_{ijk} u_{i} u_{j} u_{k} + l^{2}(b_{e} + \sum b_{i} u_{i})$$

$$u_{i} = v_{i} + 1/2 \quad \text{(Stretching)}$$

$$v_{i} + 1 \quad \text{(Bending)} \quad \text{(Oka et al., 1944, 2012)} \quad (3)$$

Thank you for your attention !

T. Hirano

U. Nagashima

P. Jensen

Differences in MORBID, Perturb, and Exp.

	MORBID	Perturb	Exp.
α_1, α_3	similar	similar	similar
α_2 (bending)	<mark>positive</mark> (0.000230)	negative (-0.000379)	negative (-0.000350)
Region of PES employed	whole	near-equilibrium.	near-equilibrium
Fe-C elongation (bending)	0	Х	X

What to do?

Term value of rotation; $F_{v}(J) = B_{v}^{\text{obs}} J(J+1) - D_{v} J^{2} (J+1)^{2} + \dots \qquad (1)$ $\alpha_{2} \equiv B_{0} - B_{(v-\text{bend }=1)} \qquad (2)$

$$I_{v} = I_{v}^{eq} + \Delta I_{v} \text{ (for Fe-C elongation due to } f_{102})$$

$$B_{v} \equiv h / (8\pi^{2}c I_{v}) = h / [8\pi^{2}c (I_{v}^{eq} + \Delta I_{v})] \approx [h / (8\pi^{2}c I_{v}^{eq})] \cdot (1 - \Delta I_{v} / I_{v}^{eq})$$

$$= B_{v}^{eq} (1 - \Delta I_{v} / I_{v}^{eq})$$
(3)
(4)
(5)

When B_v^{obs} (i.e., probably = B_v^{eq}) is corrected against $\Delta I_v / I_v^{\text{eq}}$, $B_{(v-\text{bend}=1)}$ becomes smaller to give $\alpha_2 > 0$.

Now we can make quantitative arguments....

Floppiness (i.e. lonicity)

• Qualitatively from the C-N bond length:

FeNC >> CoCN ≈ NiCN

(r_e(C≡N)/Å) **1.182 1.168 1.167**

- Bending force constant (aJ⁻¹) from the 3-D PES FeNC >> CoCN > NiCN 0.036 0.151 0.180
- Bending potential: FeNC >> CoCN > NiCN

FeNC ${}^{6}\Delta_{i}$ MR-SDCI+Q+ E_{rel} /[Roos ANO(Fe), aug-cc-pVQZ(C,N)]

Perturbational Method

	Calc.	Exp. ⁶ ∆ _i ^{a)}		Calc.	Exp. ⁶ Δ _i ^{a)}
<mark>r</mark> e(Fe−N) /Å	1.9354	2.01(5) (<i>r</i> ₀)	$\omega_{ m e} x_{ m e}$ (11) /cm ⁻¹	-11.8	
<mark>r</mark> _e (N-C) /Å	1.1823	<u>1.03(8) (</u> r ₀)	$\omega_{\rm e} x_{\rm e} (22) / {\rm cm}^{-1}$	-4.0	
a _e (Fe-N-C)/deg	180.0	180.0	$\omega_{ m e} x_{ m e}$ (33) /cm ⁻¹	-3.7	
B _e /cm⁻¹	0.1425		$\omega_{\rm e} x_{\rm e}$ (12) /cm ⁻¹	-4.9	
<i>B</i> _{0,Ω=9/2} /cm ⁻¹	<u>0.14278</u> b	<u>0.14447(13)</u>	$\omega_{\rm e} x_{\rm e} (13) / { m cm}^{-1}$	-3.7	
D_{J}^{*} 10 ⁸ / cm ⁻¹	4.83		$\omega_{ m e} x_{ m e}$ (23) /cm ⁻¹	8.6	
<i>E</i> _e /Eh -1	364.194173	35	<i>g</i> ₂₂ /cm ⁻¹	2.66	
$lpha_{ m 1}$ / cm ⁻¹	0.00055		v ₁ (N-C) /cm ⁻¹	2060	
$lpha_{ m 2}$ / cm ⁻¹	-0.00147		v ₂ (Fe-N-C) /cm⁻¹	102	
$lpha_{ m _3}$ / cm ⁻¹	0.00061		v ₃ (Fe-N) /cm ⁻¹	475	464.1(42)
ω_1 (N-C) /cm ⁻¹	2090		Zero-Point E. /cm	1 ⁻¹ 1385	
ω_2 (Fe-N-C) /cm	⁻¹ 109		ζ_{12} /cm ⁻¹	-0.97	
<i>w</i> ₃ (Fe-N) /cm ⁻¹	476		ζ ₂₃ /cm ⁻¹	-0.24	
A _{so} /cm ⁻¹	-83		Λ-doubling/cm ⁻¹	0.00038	
[<i>cf</i> . FeF	$(^{6}\Delta_{i})$ -78.15	5]c			
$\mu_{ m e}$ /D	-4.59		_		
(Expec. Value	-4.74)				

^a (LiF) Lie, *et al.* (2001). ^b **Difference 1.2 %** ^c Allen and Ziurys (1997)

C-N Bond le	ngth / Å			
	FeNC	CoCN	NiCN	実験 FaNC
Obs. (r ₀)	1.03(8) ^a	1.1313(10) ^b	1.1591(29) ^c 1.1590(1) ^d	^{a)} (LIF) Lie and Dagdian (2001) CoCN ^{b)} (MW) Sheridan and Ziurys (2004)
Calc. (r _e)	1.182	1.168	1.166	NiCN ^{c)} (LIF) Kingston, Merer, Varberg (2002)
Difference	-0.15	-0.037	-0.007	^{d)} (MW) Sheridan and Ziurys (2003)

• **Ionicity** (Metal-Ligand) can be estimated from the C-N bond length:

 M^{δ^+} – (CN) $^{\delta^-}$

The transferred electron goes into $\sigma^*(CN)$ orbital \rightarrow weaken the CN bond.

(*i.e.* lengthen the CN bond).

Hence, the iconicity of the Metal-Ligand bond should be in this order,

Fe-NC > Co-CN > Ni-CN (from *ab initio* r_e)

39° (14°) $\gamma_0 \approx 0.10$ Quasi-linear ⁶∆ FeOH

J. Mol. Struct. 798, 1 (2006)

Why the Conventional method to derive r_0 value is inadequate ?

Observe B_0 's for isotopomers

- \rightarrow derive r_0 's, assuming <u>linear</u> structure for the moment of inertia calc.
- \rightarrow interpret thus derived r_0 's as the projection average onto the *a*-axis in the bending motion.

However, <u>No</u> average over bending motion is taken into account in this procedure !

NiCN case:

Experimentally decided r_0 agrees with MORBID $< r(C-N) \cos \tau >_0$, since B_0 's for ⁵⁸NiCN and ⁶⁰NiCN are corrected for the rotationvibration interaction constants α_i .

Now, the turn is in the experimental side.

Explicit treatment of large amplitude bending motion is necessary.

Linear と Quasi-linear

1) ¹ Σ CsOH (Linear)

a) D.R. Lide, Jr., and R.L. Kuczkowski, J. Chem. Phys., 46, 4768 (1967). *r*₀ values obtained by extrapolating the bending mode to zero amplitude
b) D.R. Lide, Jr., and C. Matsumura, J. Chem. Phys., 50, 3080 (1969). *r*_e values

40 years later:

c) T. Hirano, V. Derpmann, U. Nagashima, P. Jensen (*J. Mol. Spectrosc.*, **263**, 150 (2010)) CCSD(T)_DK3 /[QZP Roos ANO-RCC (Cs, O, H)]

	r _e (Cs-O)	r _e (O−H)	<i>r</i> ₀ (Cs-O)	<i>r</i> ₀ (O-H)	< ρ̄>(δ ρ̄)/deg .
Lide et al ^{a)}	2.391(2) ^{b)}	0.960(10) ^{b)}	2.395	0.969	0.0
[Conventional met	hod:		2.403	0.920	0.0]
CCSD(T)_DK3	2.4164	0.9575			0.0
MORBID			2.4231	0.9742	17 (9)
a-軸投影值			2.4227	0.9206	

2) ⁶ A FeOH (quasi-linear)

No experiment

MR-SDCI+Q+E_{rel}/[Rooa ANO (Fe),aVQZ(O, H)]

	<i>r</i> _e (Fe-O)	<i>r</i> _e (O-H)	<i>r</i> ₀ (Fe-O)	<i>r</i> ₀ (O-H)	<ρ̄>(δρ̄)/deg.
$MR\operatorname{-}SDCI\operatorname{+}Q\operatorname{+}\!E_{rel}{}^{6}\!A'(\Delta)$	1.8059	0.9520			45.8
MORBID			1.8049	0.9669	39 (14)
a-axis projection			1.8045	<u>0.7320</u>	

Bending Motion

• Bonding type

covalent bond: Small amplitude bending motion, and normal. lonic bond: Large amplitude bending motion, but normal. coordinate-covalent bond:

Large amplitude bending motion with significant elongation with bending.

Hirano, Ishii, Odaka, Jensen, JMS, 215, 42 (2002)

