SO₃

- Forbidden rotational spectrum
- Rovibrational energy cluster
 formation

SO₃ calculations

- Nuclear-motion calculations carried out with TROVE¹
- Potential-energy surface obtained by *ab initio* methods²

¹S.N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007).
²D. S. Underwood, J. Tennyson, and S. N. Yurchenko, Phys. Chem. Chem. Phys. 15, 10118 (2013).

SO₃: All nuclei are zero-spin bosons

Only levels with $\Gamma_{\rm rve} = A_1^{\prime}$ or A_1^{\prime} exist in Nature

All other levels are missing!

K = 3*t* in vib. ground state

D _{3h} (M):	Е	(123)	(23)	E^*	(123)*	(23)*
	1	2	3	1	2	3
D _{3h} :	Е	2C ₃	3C ₂	$\sigma_{ m h}$	2S ₃	3σ _v

Equiv. rot.: $R^0 R_z^{2\pi/3} R_{\pi/2}^{\pi} R_z^{\pi} R_z^{5\pi/3} R_0^{\pi}$

SO₃ Forbidden rotational spectrum

SO₃ Reduced energies Vibrational ground state

Confirmation: Rotational energy surface¹

Energy as function of angles θ and ϕ that define the classical angular momentum

$$J_x = \sqrt{J(J+1)}\,\hbar\,\sin\theta\,\cos\phi,$$

$$J_y = \sqrt{J(J+1)}\hbar \sin\theta \sin\phi,$$

$$J_z = \sqrt{J(J+1)} \hbar \cos \theta \,,$$

in the molecule-fixed axis system.

¹W. G. Harter, Phys. Rev. A **24**, 192 (1981).

J = 200

Six maxima along the equator, $\theta = 90^{\circ}$

$$F(\beta, \gamma) = \int_0^{2\pi} d\alpha \int_{\text{vib}} dV \left(\psi_n^{\text{PCS}}\right)^* \psi_n^{\text{PCS}},$$

xyz is molecule-fixed; XYZ is space-fixed

 $F(\beta,\gamma)$ is the probability density of β,γ or of Z axis relative to molecule

- (α, β, γ) define orientation of molecule (*xyz*) relative to laboratory (*XYZ*).
- (β , γ) define orientation of Z axis relative to molecule (xyz).

$$F(\beta, \gamma) = \int_0^{2\pi} d\alpha \int_{\text{vib}} dV \left(\psi_n^{\text{PCS}}\right)^* \psi_n^{\text{PCS}},$$

 ψ_n^{PCS}

- is "Primitive Cluster State"
- A cluster is described by six symmetrically equivalent PCS states
- The correspondence between PCS states and symmetrized states can be determined, for example, by projection operator methods

We consider states with m = J to align Z axis with J

$F(\beta, \gamma)$ for ³²S¹⁶O₃, J = m = 250

Angular momentum (rotation axis) lies on equator!

Contrast: $F(\beta, \gamma)$ for ³²S¹⁶O₃, (*J*,*K*) = (100,99) – at bottom of *J* manifold.

Angular momentum (rotation axis) lies towards north pole!

SO₃

253°

116.1°-

- Rovibrational energy clusters determined by QM calculations
- Surprising, but borne out by semiclassical RES theory