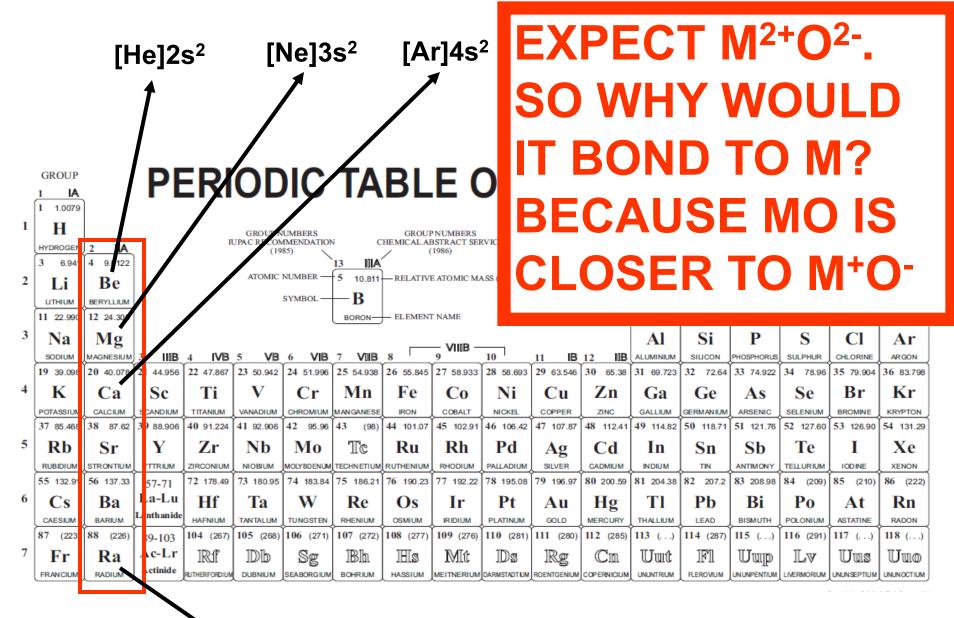
An ab initio study of the alkaline earth oxides BeOBe, MgOMg, CaOCa, SrOSr, BaOBa and RaORa.

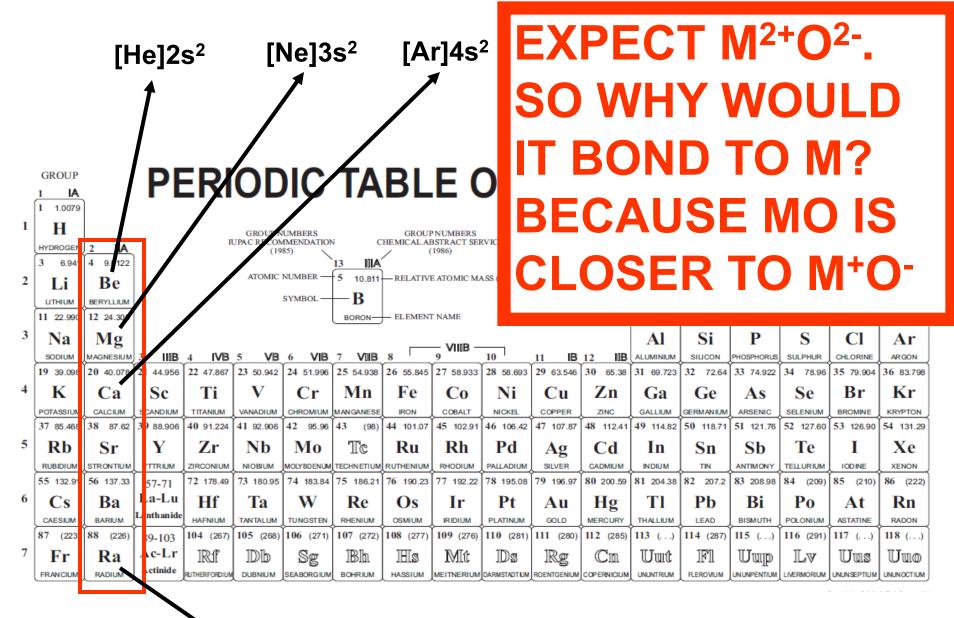
Bojana Ostojić (Belgrade), Per Jensen (Wuppertal), Peter Schwerdtfeger (Massey University, New Zealand), Phil Bunker (NRC, Ottawa).

An ab initio study of the alkaline earth oxides BeOBe, MgOMg, CaOCa, SrOSr, BaOBa and RaORa.


Bojana Ostojić (Belgrade), Per Jensen (Wuppertal), Peter Schwerdtfeger (Massey University, New Zealand), Phil Bunker (NRC, Ottawa).

"Hypermetallic" since have one more metal atom than they should

	[He]2s ² [Ne]3s ² [Ar]4s ²																	
1 2 3	Н 1.0079 Н 3 6.94 Li ШТНІИМ 11 22.990 Na	2 A 4 9.122 Be BERYLLIUM 12 24.30 Mg		л /	UPAC RECON (19) ATOMIC	UMBERS IMENDATION 85) NUMBER — SYMBOL —	13 111A 5 10.811 BBORON	HEMICAL AF	1986) E ATOMIC MA				13 [A 5 10.811 BORON 13 26.982 A]		15 VA 7 14.007 N NITROGEN 15 30.974 P	8 15.999 O OXYGEN 16 22.065	9 18.998 F F 1 35.453 Cl	He HELIUM 10 20.180 Ne NEON 18 39.948 Ar
4	туа <u>sodium</u> 19 39.098 К <u>POTASSIUN</u> 37 85.468	AGNESIUM 3 20 40.078 1 Ca calcium 3 38 87.62 3	L 44.956 Sc CANDIUM 9 88,906	4 IVB 22 47.867 Ті тпаліци 40 91.224	5 VB 23 50.942 V VANADIUM 41 92.906	6 VIB 24 51.996 Cr chromium 42 95.96	7 VIIB 25 54.938 Mn MANGANESE 43 (98)	8 26 55.845 Fe IRON 44 101.07	9 27 58.933 CO COBALT 45 102.91	10 28 58.693 Ni NICKEL 46 106.42	11 B 29 63.546 Cu COPPER 47 107.87	12 UB 30 65.38 Zn ZINC 48 112.41	ALUMINIUM 31 69.723 GALLIUM 49 114.82	SI SILICON 32 72.64 GERMANIUM 50 118.71	и рнозрногиз 33 74.922 АS <u>ARSENIC</u> 51 121.76		CHLORINE 35 79.904 BR BROMINE 53 126.90	ARGON 36 83.798 Kr KRYPTON 54 131.29
5	RUBIDIUM 55 132.91	STRONTIUM 56 137.33	Ү ттгілм 57-71	Zr ZIRCONIUM 72 178.49	ND NIOBIUM 73 180.95	Molybdenum 74 183.84	Tc	RUTHENIUM 76 190.23	норіля Rho таба 102.91 Rho ріля 77 192.22	PALLADIUM 78 195.08	Ag SILVER 79 196.97	Cd CADMIUM 80 200.59	In INDIUM 81 204.38	Sn TIN 82 207.2	SI 121.76 Sb ANTIMONY 83 208.98	Te Te 84 (209)	I IODINE 85 (210)	Xe xenon 86 (222)
6 7	CS CAESIUM 87 (223 Fr FRANCIUM	Ba barium 88 (226) Ra radium	a-Lu nthanide 9-103 Ac-Lr actinide	Hf hafnium 104 (267) Rif rutherfordium	Ta TANTALUM 105 (268)	TUNGSTEN 106 (271)	Re RHENIUM 107 (272) Bh BOHRIUM	OS OSMIUM 108 (277) HIS HASSIUM	Ir IRIDIUM 109 (276) MIt MEITNERIUM	Pt PLATINUM 110 (281) DS DARMSTADT UM	Rg	Cm	TI THALLIUM 113 () UULT UNUNTRUM	Pb LEAD 114 (287) FILEROVIUM	Ві візмитн 115 () UUID	POLONIUM 116 (291) LW	At ASTATINE 117 () UUS UNUNSEPTIUM	Rn RADON 118 () UUO UNUNOCTIUM


[Rn]7s²

MOM?

MOM?

Rn]7s²

MOM OK!

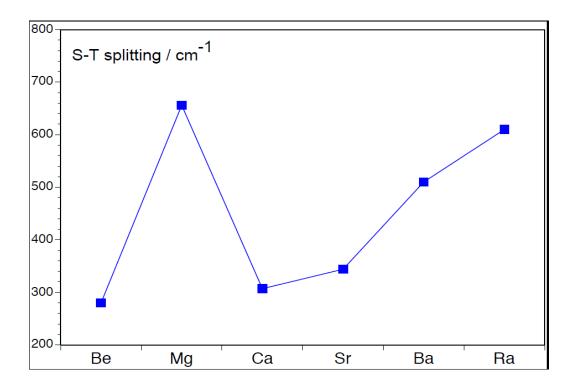
▲ [Rn]7s²

			[He]2s ² [Ne]3s ²							So these M ₂ O mols are M ⁺ O ²⁻ M ⁺								
	GROUP		Þ	ERI	ØD	OIC	TÁ	BL	EC	DF	TΗ	ΕE	ELE	EME	EN	ΓS		18 VIIIA
	1 1.0079												h	ttp://www	v.periodni	i.com		2 4.0026
1	H GROUP NUMBERS GROUP NUMBERS IUPAC RECOMMENDATION CHEMICAL ABSTRACT SERVICE									He								
	HYDROGEN	2 IA 4 9.0122		· "	UPAC RECO	85)			1986)	WICE			13 IIIA 5 10.811	14 IVA	15 VA	8 15,999		HELIUM
2	3 6.94	4 9.0122 Be			ATOMIC	NUMBER -	13 IIIA	RELATIV	E ATOMIC MA	ASS (1)				-	/ 14.00/		9 18.998	10 20.180
-	Li	BERYLLIUM				SYMBOL -	-В						B	C		OXYGEN		Ne
i	11 22.990	12 24.305	1				BORON-	- ELEMENI	NAME				13 26.982	14 28.086	\rightarrow	16 22.065	\sim \rightarrow	18 39.948
3	Na	Mg											Al	Si	Р	S	CI	Ar
	SODIUM		IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	- VIIIB -	10	11 IB	12 IIB		SILICON	L PHOSPHORUS	SULPHUR	CHLORINE	ARGON
i	19 39.098	20 40.078	44.956	22 47.867	23 50.942	24 51.996	25 54.938		27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUN	CALCIUM		TITANIUM	VANADIUM		MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
	37 85.468	38 87.62	3 <mark>9</mark> 88.906	40 91.224	41 92.906	42 95.96	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	RUBIDIUM	STRONTIUM	TTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM		XENON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	l.a-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	CAESIUM	BARIUM	nth an ide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	озміим		PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	візмитн	POLONIUM	ASTATINE	RADON
	87 (223	88 (226)	9-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	Bh	HIS	Mít	Ds	Rg	\mathbb{C} m	Uut	Fl	Uup	Lv	Uus	Uuo
l	FRANCIUM		ctinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADT UM	ROENTGENIUM	COPERNICIUM	UNUNTRIUM	FLEROVUM	UNUNPENTIUM	LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM

MOM OK!

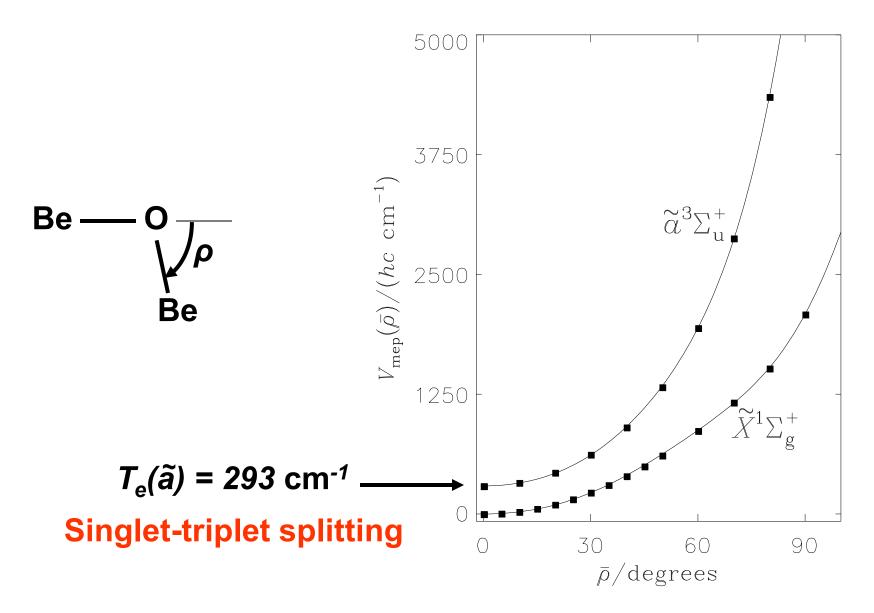
Apart from BeOBe, little known experimentally. Our interest is three-fold:

To make precise ab initio calculations on them in order to understand the electronic structure,


To predict the IR and electronic spectra and to compare with the experimental spectra,

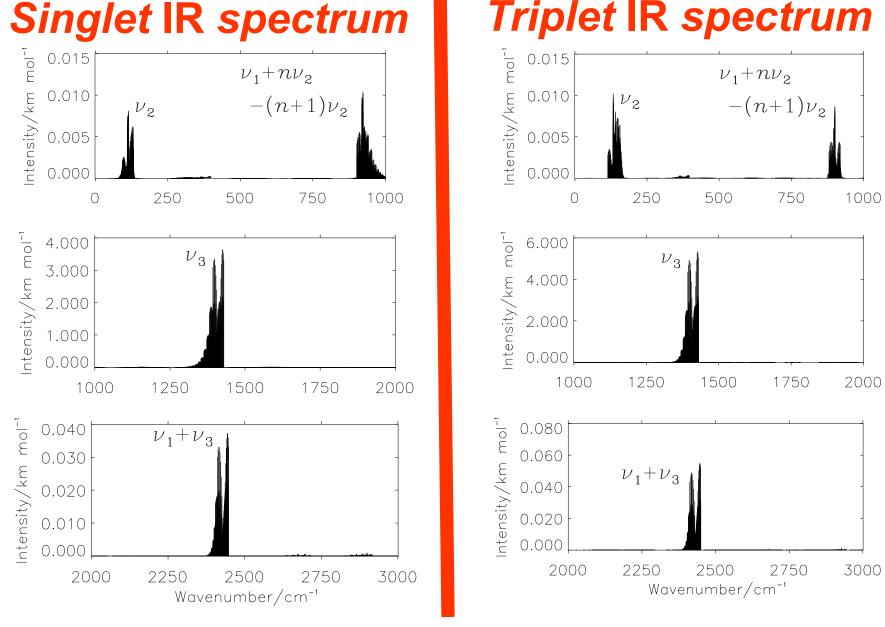
To calculate Singlet-Triplet splittings and S-T interaction strengths in order to test these molecules as candidates for high precision spectral measurements aimed at looking for a time-variation in M_p/m_e .

BeOBe, MgOMg, CaOCa, SrOSr, BaOBa and RaORa.


We find that all these MOM molecules have

A linear ${}^{1}\Sigma_{g}^{+}$ ground electronic state and a fairly low lying linear ${}^{3}\Sigma_{u}^{+}$ first excited electronic state.

S-T spin-orbit coupling too small for them to be good candidates for use in measuring the time dependence of the fundamental parameters


BeOBe bending PE curves

The calculated vibrational term values $G_{\rm vib} = E(v_1, v_2^{\ell_2}, v_3, N_{\rm min} = \ell_2) - E(0, 0^0, 0, 0)$ and effective rotational constants $B_{\rm eff}$ (in cm⁻¹) for Be¹⁶OBe in the electronic states $\tilde{X}^1 \Sigma_{\rm g}^+$ and $\tilde{a}^3 \Sigma_{\rm u}^+$.

ovp			$\tilde{X}^{1}\Sigma$)+ g	$\tilde{a}^{3}\Sigma$	+ u
exp	$(v_1, v_2^{\ell_2}, v_3)$	N_{\min}	$G_{\rm vib}$	B_{eff}	$G_{\rm vib}$	B_{eff}
	$(0, 0^0, 0)$	0	0.000^{a}	0.4744	0.000^{b}	0.4734
	$(0, 1^{1e}, 0)$	1	110.903	0.4778	132.589	0.4759
113	$(0, 1^{1f}, 0)$	1	110.911	0.4820	132.596	0.4793
	$(0, 2^0, 0)$	0	222.151	0.4861	270.392	0.4821
	$(0, 2^{2e, f}, 0)$	2	224.258	0.4858	269.909	0.4820
	$(0, 3^{1e}, 0)$	1	332.951	0.4876	409.431	0.4827
	$(0, 3^{1f}, 0)$	1	332.969	0.4965	409.445	0.4895
	$(0, 3^{3e, f}, 0)$	3	338.887	0.4921	410.661	0.4862
	$(0, 4^0, 0)$	0	441.633	0.4991	551.730	0.4906
	$(0, 4^{2e, f}, 0)$	2	444.535	0.4920	551.839	0.4903
	$(0, 4^{4e,f}, 0)$	4	454.322	0.4981	554.435	0.4903
1039	$(1, 0^0, 0)$	0	1031.774	0.4755	1034.584	0.4713
1039	$(1, 1^{1c}, 0)$	1	1148.715	0.4752	1170.828	0.4735
	$(1, 1^{1f}, 0)$	1	1148.723	0.4792	1170.834	0.4768
	$(1, 2^0, 0)$	0	1266.196	0.4893	1311.796	0.4797
	$(1, 2^{2e, f}, 0)$	2	1266.979	0.4827	1311.478	0.4794
1414	$(0, 0^0, -1)$	0	1412.100	0.4710	1413.618	0.4698
	$(0, 1^{1e}, 1)$	1	1512.600	0.4748	1537.272	0.4725
	$(0, 1^{1f}, 1)$	1	1512.609	0.4792	1537.279	0.4760

Merritt, Bondybey and Heaven, JPC A113, 13300 (2009)

At 300 K

BOTH ARE VERY WEAK

The calculated vibrational term values $G_{\rm vib} = E(v_1, v_2^{\ell_2}, v_3, N_{\rm min} = \ell_2) - E(0, 0^0, 0, 0)$ and effective rotational constants $B_{\rm eff}$ (in cm⁻¹) for $^{24}{\rm Mg^{16}O^{24}Mg}$ in the electronic states $\tilde{X}^{1}\Sigma_{\rm g}^{+}$ and $\tilde{a}^{3}\Sigma_{\rm u}^{+}$. $T_{\rm e}(a) = 671 {\rm cm^{-1}}$

		\tilde{X}^{1}	$\Sigma_{\rm g}^+$	\tilde{a}^{3}	$\Sigma_{\rm u}^+$
$(v_1, v_2^{\ell_2}, v_3)$	N_{\min}	$G_{\rm vib}$	B_{eff}	$G_{\rm vib}$	$B_{\rm eff}$
$(0, 0^0, 0)$	0	0.0^{a}	0.1088	0.0^{b}	0.1087
$(0, 1^{1e}, 0)$	1	77.1	0.1096	82.1	0.1094
$(0, 1^{1f}, 0)$	1	77.1	0.1099	82.1	0.1096
$(0, 2^0, 0)$	0	153.2	0.1107	165.5	0.1104
$(0, 2^{2e, f}, 0)$	2	155.2	0.1107	166.3	0.1103
$(0, 3^{1e}, 0)$	1	229.4	0.1113	249.4	0.1108
$(0, 3^{1f}, 0)$	1	229.4	0.1119	249.4	0.1114
$(0, 3^{3e, f}, 0)$	3	234.3	0.1116	252.2	0.1111
$(0, 4^0, 0)$	0	305.9	0.1126	335.4	0.1119
$(0, 4^{2e, f}, 0)$	2	307.4	0.1125	335.9	0.1118
$(0, 4^{4e, f}, 0)$	4	314.2	0.1126	339.9	0.1119
$(1,0^0, 0)$	0	484.7	0.1086	484.5	0.1085
$(1, 1^{ie}, 0)$	1	568.0	0.1096	573.5	0.1090
$(1, 1^{1f}, 0)$	1	568.0	0.1090	573.5	0.1093
$(1, 2^0, 0)$	0	649.0	0.1103	659.7	0.1101
$(1, 2^{2e, f}, 0)$	2	651.9	0.1102	662.5	0.1099
$(0, 0^0, 1)$	0	915.0	0.1081	920.8	0.1080
$(0, 1^{1e}, 1)$	1	986.5	0.1089	997.1	0.1086
$(0, 1^{1f}, 1)$	1	986.5	0.1092	997.1	0.1089

Diatomic ²⁴Mg¹⁶O 774.7 cm⁻

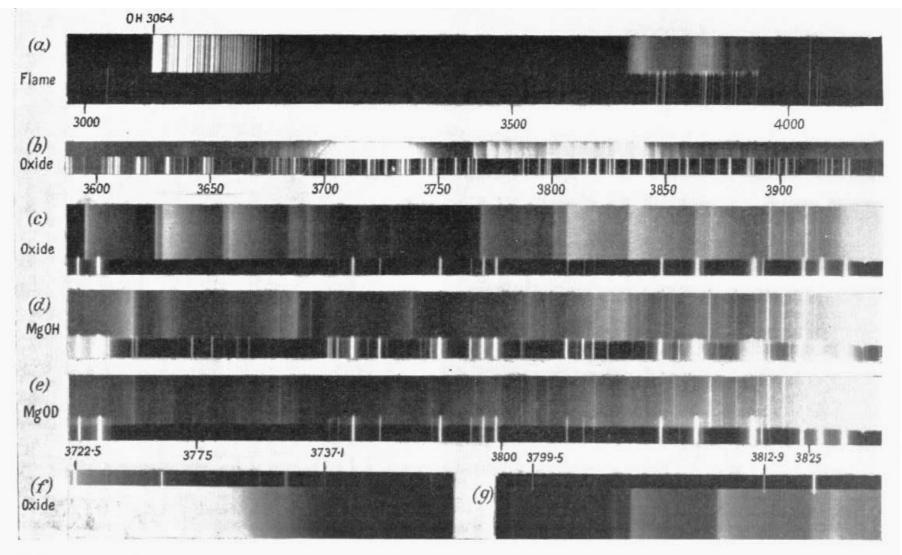
Singlet states State Φ^a	$Configuration^b$	$\Delta E_{\rm vert}$	ΔE_{vert}^c	$ \langle \Phi \mu_x \tilde{X} \rangle ^d$	$ \langle \Phi \mu_y \tilde{X} \rangle ^d$	$ \langle \Phi \mu_z \tilde{X} \rangle ^d$
$\tilde{X}^{1}\Sigma_{g}^{+}$ 1 ¹ A ₁	$\begin{array}{l} 0.75 2\pi_{\rm u}^4 6\sigma_{\rm g}^2\rangle \\ - 0.55 2\pi_{\rm u}^4 5\sigma_{\rm u}^2\rangle \end{array}$	0	0	0.0	0.0	0.0
$\tilde{A}^{1}\Sigma_{u}^{+}$ 1 ¹ B ₂	$ \begin{array}{c} 0.88 \left 2\pi_{\rm u}^4 6\sigma_{\rm g}^1 5\sigma_{\rm u}^1 \right\rangle \\ - \left. 0.23 \left 4\sigma_{\rm u}^1 2\pi_{\rm u}^4 6\sigma_{\rm g}^1 5\sigma_{\rm u}^2 \right\rangle \end{array} $	23789 420	23788 nm	0.0	1.47 3.7 D	0.0
$\tilde{B}^{1}\Sigma_{g}^{+}$ 2 ¹ A ₁	$0.68 2\pi_0^4 = 2) + 0.51 2$	0.4000	0.407.4	0.0	0.0	0.0
$\tilde{C}^{1}\Pi_{g} = 1^{1}A_{2} \\ 2^{1}B_{2}$	0.91 2 π_{1}^{3} VO	DN	la	0.0 0.0	0.0 0.0	0.0 0.0
$\tilde{D}^{1}\Pi_{g} = 2^{2}A_{2} = \frac{3^{1}B_{2}}{3^{1}B_{2}}$	$0.89 2\pi_1^4 $			0.0 0.0	0.0 0.0	0.0
$\tilde{E}^{1}\Pi_{u} = 3^{1}A_{1} \\ 1^{1}B_{1}$	$\begin{array}{l} 0.81 2\pi_{\rm u}^4 5\sigma_{\rm u}^1 2\pi_{\rm g}^1 \rangle \\ - \ 0.28 2\pi_{\rm u}^3 6\sigma_{\sigma}^1 5\sigma_{\rm u}^2 \rangle \end{array}$	31912 310	31944 nm	^{0.0} _{1.58} 4.0 D	0.0 0.0	1.58 0.0
$ \tilde{F}{}^{1}\Pi_{u} 4{}^{1}A_{1} \\ 2{}^{1}B_{1} $	$\begin{array}{l} 0.87 \left 2\pi_{\rm u}^{\rm 3} 6\sigma_{\rm g}^{\rm 1} 5\sigma_{\rm u}^{\rm 2} \right\rangle \\ + \left. 0.28 \left 2\pi_{\rm u}^{\rm 4} 5\sigma_{\rm u}^{\rm 1} 2\pi_{\rm g}^{\rm 1} \right\rangle \end{array}$	33524	33514	0.0 0.16	0.0 0.0	0.16 0.0
Triplet states State Φ^a	$Configuration^b$	$\Delta E_{\rm vert}$	$\Delta E_{\rm vert}^{c}$	$ \langle \Phi \mu_x \tilde{a} \rangle ^d$	$ \langle \Phi \mu_y \tilde{a} angle ^d$	$ \langle \Phi \mu_z \tilde{a} \rangle ^d$
$\tilde{a}^{3}\Sigma_{u}^{+} = 1^{3}B_{2}$	$0.93 2\pi_{\rm u}^4 6\sigma_{\rm g}^1 5\sigma_{\rm u}^1\rangle$	775	791	0.0	0.0	0.0
$\tilde{b}^{3}\Pi_{g} = \frac{1}{2} \frac{{}^{3}A_{2}}{{}^{2}B_{2}}$	$\begin{array}{l} 0.82 \left 2\pi_{\rm u}^4 6\sigma_{\rm g}^1 2\pi_{\rm g}^1 \right\rangle \\ - \left. 0.40 \left 2\pi_{\rm u}^3 6\sigma_{\rm g}^2 5\sigma_{\rm u}^1 \right\rangle \end{array}$	27414 36	0 nm	1.60 4.1 [0.0	0.0 0.0	$0.0 \\ 1.60$
$\tilde{c}^{3}\Pi_{g} = 2 {}^{3}A_{2} \\ 3 {}^{3}B_{2}$	$\begin{array}{l} 0.82 \left 2\pi_{\rm u}^3 6\sigma_{\rm g}^2 5\sigma_{\rm u}^1 \right\rangle \\ + \left. 0.40 \left 2\pi_{\rm u}^4 6\sigma_{\rm g}^1 2\pi_{\rm g}^1 \right\rangle \end{array}$	29479 34	29437 0 nm	^{1.13} _{0.0} 2.9 D	0.0 0.0	0.0 1.13
$d^{3}\Pi_{u} = 1^{3}A_{1} = 1^{3}B_{1}$	$\begin{array}{l} 0.87 \left 2\pi_{\rm u}^4 5\sigma_{\rm u}^1 2\pi_{\rm g}^1 \right\rangle \\ + \left. 0.28 \left 2\pi_{\rm u}^3 6\sigma_{\rm g}^1 5\sigma_{\rm u}^2 \right\rangle \end{array}$	31687	31778	0.0 0.0	0.0 0.0	0.0 0.0
$\tilde{e}^{3}\Pi_{u} = 2^{3}A_{1} \\ 2^{3}B_{1}$	$\begin{array}{l} 0.88 \left 2\pi_{\rm u}^3 6\sigma_{\rm g}^1 5\sigma_{\rm u}^2 \right\rangle \\ - \left. 0.27 \left 2\pi_{\rm u}^4 5\sigma_{\rm u}^1 2\pi_{\rm g}^1 \right\rangle \end{array}$	34272	34221	0.0 0.0	0.0 0.0	0.0 0.0

1959 Proc. Phys. Soc. 73 244

(http://iopscience.iop.org/0370-1328/73/2/313)

Band Spectra of Magnesium Oxide and Hydroxide between 4000 and 3600 Å

BY D. PESIC[†] AND A. G. GAYDON


Chemical Engineering Department, Imperial College, London

MS. received 9th October 1958

Abstract. Band systems in the extreme violet have been excited in 'vacuum' arcs in oxygen, ordinary water vapour and heavy-water vapour, and also in a flame. Wavelengths of MgOH and MgOD bands are listed. An oxide system in the same region has been studied under large dispersion but is too complicated to analyse; it is attributed to a polyatomic emitter, possibly Mg_2O_2 .

From Discussion:

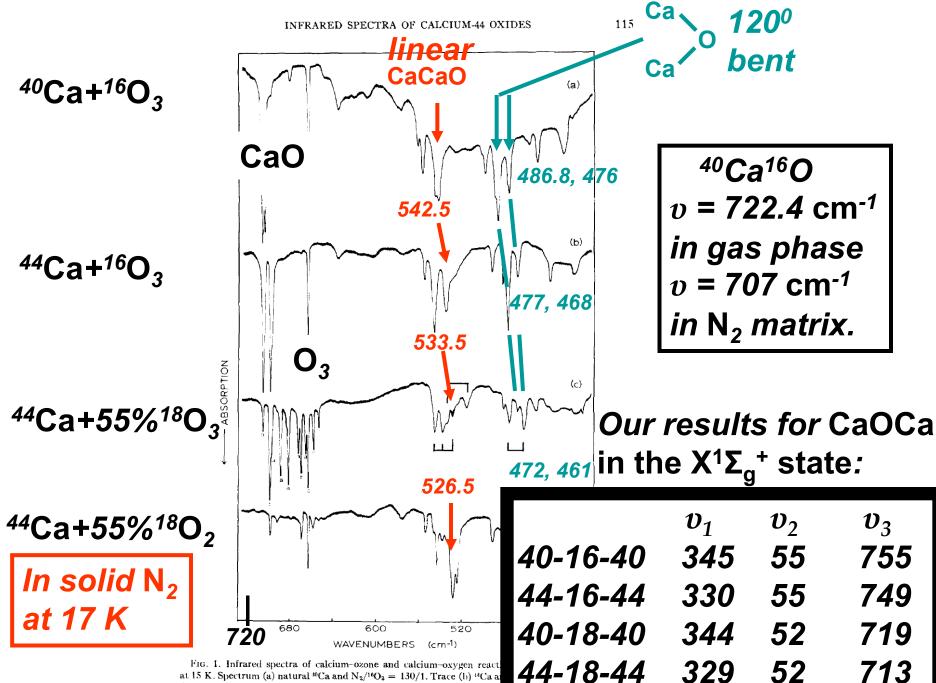
must therefore conclude that a polyatomic emitter is responsible, at any rate for the main second group of bands. The species which can be expected are MgO₂, Mg₂O and Mg₂O₂. Although occurrence of these molecules in an arc at high temperature might appear unlikely (Brewer and Mastick 1951), similar molecules of the alkaline earth metals were found by a mass spectrometric method by Aldrich (1951) and Inghram and Chupka (1955).

(a) Oxy-hydrogen flame containing magnesium chloride. Medium quartz spectrograph. (b) and (c) Mg arc in O₂. 1st order, 21 ft grating.
 (d) Mg arc in H₂O vapour. 1st order, 21 ft grating. (e) Mg arc in D₂O vapour. 1st order, 21 ft grating.
 (f) and (g) Mg arc in O₂. 2nd order, 21 ft grating.

Iron arc comparison spectra are shown below the main spectra in (a), (b), (c), (d) and (e), and above in (f) and (g).

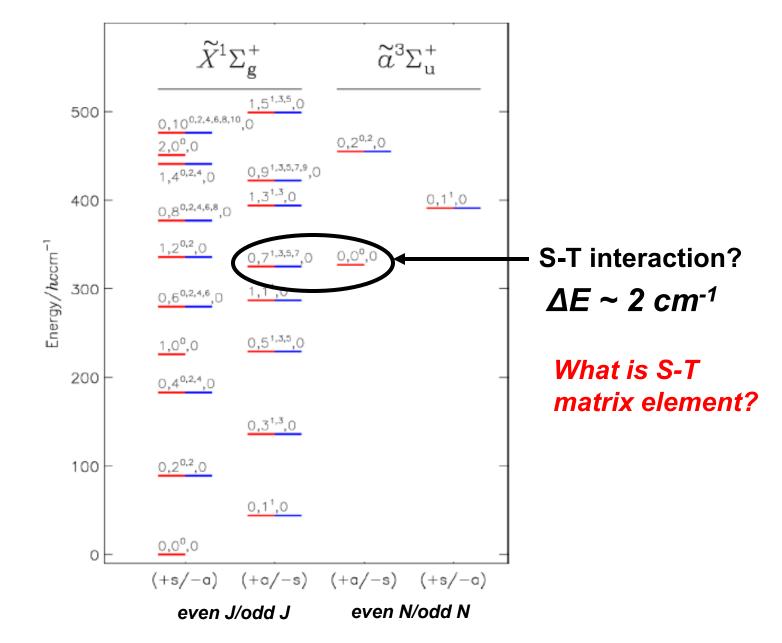
Ъ́³П_g-а 360 nm с̃³П_g-а 340 nm $\widetilde{A}^{1}\Sigma_{u}^{+}$ - X 420 nm *Е̃¹П*,, -Х 310 nm

JOURNAL OF MOLECULAR SPECTROSCOPY 68, 114-121 (1977)

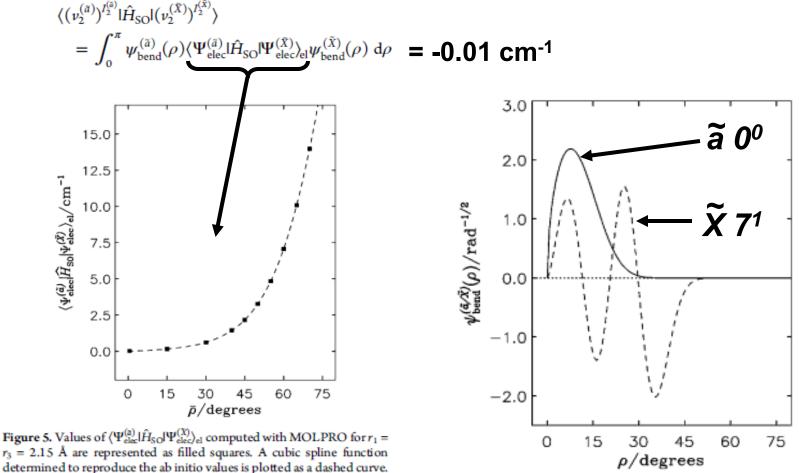

Infrared Spectra of Matrix-Isolated Calcium-44 Substituted Oxides

LESTER ANDREWS¹ AND BRUCE S. AULT²

Chemistry Department, University of Virginia, Charlottesville, Virginia 22901


The products of ⁴⁴Ca atom reactions with ozone and oxygen have been isolated in solid nitrogen at 15 K. An excellent wavenumber fit for four isotopic molecules confirms the diatomic CaO assignment. Calcium and oxygen isotopic data strongly support the observation of rhombic (CaO)₂ and isosceles triangular CaO₂ and Ca₂O species.

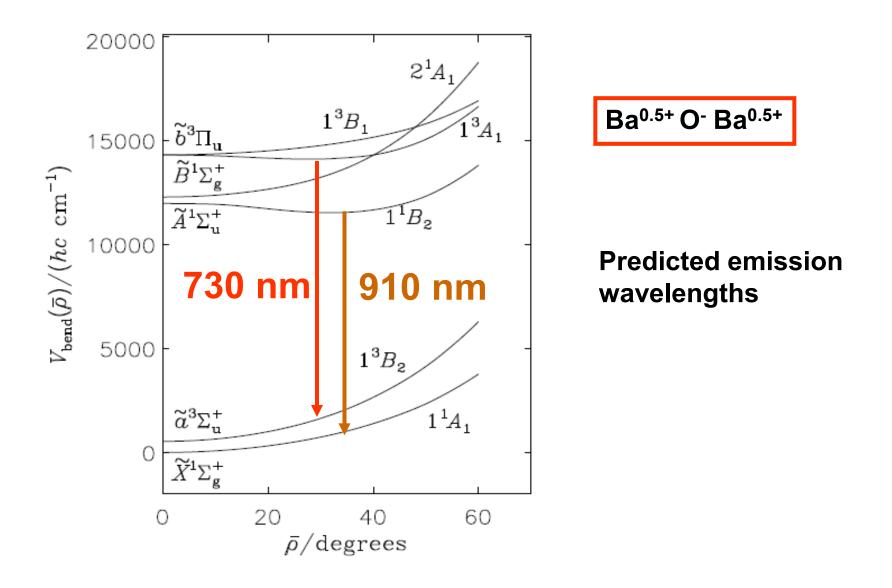
Also think that spectrum shows linear CaCaO molecule


(c) ⁴⁴Ca and N₂/²⁶⁻¹⁸O₃ = 150/1, 55% ¹⁸O enrichment, Trace (d) ⁴⁴Ca and

SrOSr singlet-triplet interaction



ST matrix element =


SrOSr

$\Delta E \sim 2 \ cm^{-1}$ Thus energy shift ~ $(0.01)^2/2 \ cm^{-1} = 0.00005 \ cm^{-1}$



BaOBa bending PE curves

Gee et al. The cluster isolated chemical reaction technique.

BaOBa

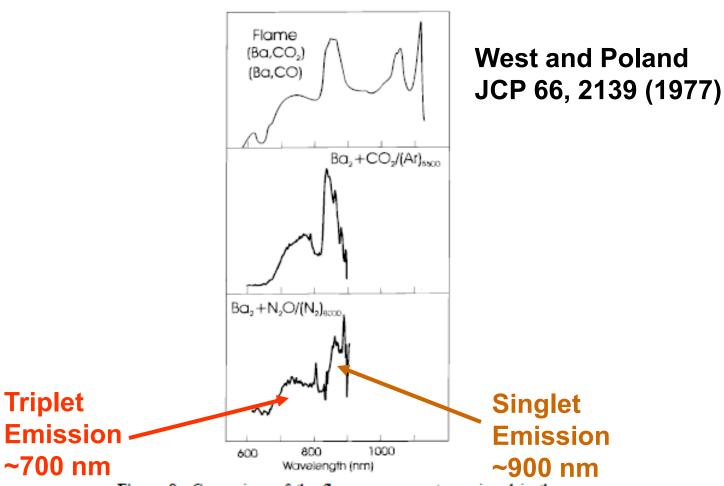


Figure 8. Comparison of the fluorescence spectra assigned in the present work to Ba_2O with that observed by West et al.⁶ (upper part) in Ba/CO_2 and Ba/CO flames. The spectra have been corrected for the transmission of the detection system. The middle part corresponds to the reaction $Ba_2 + CO_2$ on argon clusters and the bottom part to the $Ba_2 + N_2O$ reaction on nitrogen clusters.