See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281315246

THE PREDICTED SPECTRUM OF THE SbH\$_2\$ MOLECULE IN ITS LOWEST TWO RENNER-DEGENERATE...

READS 71

361 PUBLICATIONS 9,781 CITATIONS

An *ab initio* study of the Renner effect and spin-orbit coupling in SbH₂ and BiH₂ **Bojana Ostojić**,^{*a*} **Per Jensen**,^{*b*} **Peter Schwerdtfeger**,^{*c*} **and Philip R. Bunker**^{*d*}

^aUniversity of Belgrade, Serbia; ^bBergische Universität Wuppertal, Germany; ^cMassey University Auckland, New Zealand; ^dSteacie Laboratory, National Research Council of Canada, Ottawa, Ontario, Canada.

Introduction

We present the results of *ab initio* calculations for the two lowest electronic states of the Group 15 (pnictogen) dihydrides, SbH₂ and BiH₂. For each of these molecules the two lowest electronic states, X^2B_1 and $\tilde{A}^2 A_1$, become degenerate at linearity as a $1^2 \Pi_u$ state and are therefore subject to the Renner effect (Fig. 1). Spin-orbit coupling is also strong in these two heavy-element containing molecules. We construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques involving these two electronic states for SbH₂. Including both the Renner effect and spin-orbit coupling, we calculate rovibronic term values for SbH₂. For the heavier dihydride BiH₂ we calculate bending potential curves and the spin-orbit coupling constant for comparison.

Figure 1: The bending potential energy functions of SbH₂ in the \tilde{X}^2B_1 and \tilde{A}^2A_1 electronic states. The bond lengths are both held fixed at the value $r^{(\text{ref})} = 1.719$ Å. The energies of the lowest bending eigenstates with $K_a = 0$ are indicated for the two electronic states. $\rho = 180^{\circ} - \angle (H-Sb-H)$.

Ab initio Calculations

We have computed energies on the potential energy surfaces of the $\tilde{X}^2 B_1$ and $\tilde{A}^2 A_1$ electronic states of SbH₂ and BiH₂ with the MOL-PRO 2010.1 program package [1], employing an all-electron CASSCF method, followed by a MRCI treatment. For hydrogen we used a augcc-pV5Z basis set, for antimony a Sapporo-DKH3-QZP-2012 basis set, and for bismuth a segmented all-electron contracted DZP basis set constructed for use with the non-relativistic DHK Hamiltonian.

Term Values for SbH₂

Thus far, we have carried out calculations of rovibronic term values for $\tilde{X}^2 B_1$ and $\tilde{A}^2 A_1$ SbH₂ by means of the RENNER program system [2, 3, 4]. Values for 121 SbH₂, 121 SbD₂, 121 SbHD, 123 SbH₂, ¹²³SbD₂, and ¹²³SbHD are available, but we list only those for ¹²¹SbH₂ here. Simulations of rovibronic spectra are under way.

Table 1: Calculated rovibron	c term values (in cm ⁻	$^{-1}$) for selected (a	(v_1, v_2, v_3) states
of $\tilde{X}^2 B_1$ ¹²¹ SbH ₂ .		X	

$N_{K_aK_c}$	000	1	10	1	11	1	10
(v_1, v_2, v_3)	$F_1{}^a$	$F_2{}^a$	$F_1{}^a$	F_2	F_1	F_2	F_1
(0,0,0)	0.0	8.481	8.609	7.082	9.561	9.891	12.309
(0,1,0)	828.342	836.894	837.026	835.468	838.101	838.412	840.964
(0,2,0)	1652.531	1661.171	1661.307	1659.661	1662.461	1662.756	1665.452
(1,0,0)	1889.054	1897.388	1897.532	1896.021	1898.498	1898.787	1901.201
(0,0,1)	1892.106	1900.496	1900.627	1900.627	1901.535	1901.839	1904.250
(0,3,0)	2472.531	2481.264	2481.405	2478.926	2481.908	2482.182	2482.182
(1,1,0)	2702.607	2710.884	2711.150	2709.613	2712.242	2712.513	2715.063
(0,1,1)	2704.247	2712.710	2712.849	2711.386	2713.881	2714.155	2716.701
(0,4,0)	3290.569	3299.407	3299.551	3295.414	3298.596	3298.832	3301.843
(1,2,0)	3512.175	3520.732	3520.770	3519.162	3521.974	3522.215	3524.910
(0,2,1)	3512.176	3520.729	3520.860	3519.097	3521.991	3522.213	3524.902
(2,0,0)	3708.831	3717.135	3717.202	3715.650	3718.180	3718.402	3720.813
(1,0,1)	3709.349	3717.626	3717.703	3716.135	3718.673	3718.920	3721.330
(0,0,2)	3780.747	3789.015	3789.148	3787.581	3790.052	3790.320	3792.730
(0,5,0)	4102.517	4111.504	4111.657	4109.007	4112.417	4112.625	4115.818
(0,3,1)	4316.126	4324.782	4324.909	4322.225	4325.153	4325.480	4328.320
(1,3,0)	4317.675	4326.302	4326.492	4323.912	4326.916	4327.133	4329.983
(2,1,0)	4506.171	4514.542	4514.615	4513.023	4515.696	4515.913	4518.460
(1,1,1)	4506.455	4514.805	4514.900	4513.283	4515.976	4516.196	4518.742
(0,1,2)	4577.898	4586.237	4586.374	4584.770	4587.397	4587.642	4590.188
(0, 6, 0)	4905.680	4914.771	4914.932	4912.027	4915.694	4915.853	4919.248

^{*a*}An F_2 state has J = N - 1/2; an F_1 state has J = N + 1/2.

Table 2: Calculated rovibronic term values^{*a*} (in cm⁻¹) for selected (v_1, v_2, v_3) states of $\tilde{A}^2 A_1 {}^{121}$ SbH₂.

$N_{K_aK_c}$	000	1	10	1	11	1	10
(v_1, v_2, v_3)	$F_1{}^b$	$F_2{}^b$	$F_1{}^b$	F_2	F_1	F_2	F_1
				121 SbH $_2$			
(0,0,0)	18316.216 ^c	6.240	6.457	19.214	10.844	10.844	10.844
(0,1,0)	615.973	622.265	622.497	636.397	626.815	637.434	627.616
(0,2,0)	1275.968	1282.237	1282.237	1298.815	1286.940	1299.905	1287.716
(1,0,0)	1586.781	1592.887	1593.108	1605.927	1597.430	1606.818	1598.142
(0,0,1)	1627.291	1633.426	1633.646	1646.052	1637.825	1646.962	1638.558
(0,3,0)	1950.598	1956.822	1957.080	1977.582	1961.433	1978.695	1962.121
(1,1,0)	2194.131	2200.295	2200.530	2214.350	2204.726	2215.365	2205.503
(0,1,1)	2226.467	2232.659	2232.892	2246.377	2236.994	2247.400	2237.785
(0,4,0)	2604.237	2610.436	2610.641	2638.632	2614.033	2639.744	2614.574
(1,2,0)	2840.935	2847.077	2882.516	2863.555	2851.600	2864.626	2852.355
(0,2,1)	2871.873	2878.045	2878.300	2894.067	2882.516	2895.142	2883.284
(2,0,0)	3114.963	3120.942	3121.165	3133.929	3125.375	3134.800	3126.064
(1,0,1)	3133.207	3139.209	3139.432	3151.899	3143.541	3152.779	3144.244
(0,0,2)	3227.186	3233.207	3233.429	3245.647	3237.452	3246.538	3238.168
(0,5,0)	3244.770	3251.013	3251.137	3288.429	3252.341	3289.610	3252.782

^{*a*}Unless otherwise indicated the term values are relative to the $\tilde{A}^2 A_1$ level with $(v_1, v_2, v_3, N_{K_aK_c}, J) = (0, 0, 0, 0_{00}, 1/2)$. ^bAn F_2 state has J = N - 1/2; an F_1 state has J = N + 1/2. ^cRelative to the $\tilde{X}^2 B_1$ level with $(v_1, v_2, v_3, N_{K_aK_c}, J) =$ $(0, 0, 0, 0_{00}, 1/2).$

Local Mode Vibrations and Energy Clusters

The term values of Table 1 show that $\tilde{X}^2 B_1$ SbH₂ is a local mode molecule. Stretching states $(v_1, 0, v_3)$ with a common value of v_1 + $v_3 = N$ are close in energy and form characteristic patterns. The energy patterns are explained in terms of the Harmonically-Coupled-Anharmonic-Oscillator (HCAO) model (see Refs. [5, 6] and references therein), which sets up a Hamiltonian-representation matrix for a given value of N in terms of Morse-oscillator basis functions $|n_1n_3\rangle$ with n_1 $+ n_3 = N$. The matrix elements depend on three parameters ω_M , x_M , and λ . Typically, $\omega_M \gg x_M$ and $\omega_M \gg \lambda$ (see Fig. 2). In reality, the characteristic patterns are sometimes 'spoiled' by interactions with nearby (v_1, v_2, v_3) states having $v_2 > 0$; these states are not accounted for by the HCAO model.

The vibrational energy level clusters caused by local-mode effects are accompanied by rovibronic energy clusters at high rotational excitation [5, 6, 7], analogous to the ones formed in the X^2B_1 and A^2A_1 electronic states of the PH₂ radical [8]. Figure 3 shows examples of this; they are term value diagrams for the vibrational ground state (left), and the combined ν_1/ν_3 states (right), respectively, of $\tilde{X}^2 B_1$ ¹²¹SbH₂. In both displays, we recognize the formation of four-fold energy clusters, the states in each cluster being of symmetry $A_1 \oplus A_2 \oplus B_1 \oplus$ B_2 [11] in the molecular symmetry group [9, 10] $C_{2v}(M)$. The energy clusters in Fig. 3(left) are of Type I [12]; they involve only one vibrational state, the vibrational ground state $\tilde{X}^2 B_1$ ¹²¹SbH₂. The energy clusters in Fig. 3(right) are formed by coalescence (with increasing J) of two energy doublets, one doublet belonging to the ν_1 vibrational state and the other one to the ν_3 vibrational state. Such clusters are of Type II [12].

Molecu ¹²¹SbH

 121 SbD

¹²¹SbH

Contact Information:

FB C – Physikalische und Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany

Phone: +49 202 439 2468 Email: jensen@uni-wuppertal.de WWW: http://www.ptc.uni-wuppertal.de /jensen.html

Conclusions

ule	Environment	ν_3/cm^{-1}	ν_1/cm^{-1}
$[_{2}]$	pure H_2	1878	1869.7
_	Ne/H ₂	1883.9	1879.0
	Ar/H_2	1869.0	1863.7
	Calc.	1892.1	1889.1
2	pure D_2	1345.8	1341.9
	Ne/D ₂	1352.0	1349.4
	Ar/D_2	1341.8	1337.6
	Calc.	1360.6	1357.8
D	Ar/HD	1866.5	1339.6
	Calc.	1890.7	1359.0

In the matrix isolation infrared spectroscopic work of Ref. [13], laser ablated Sb atoms were reacted with hydrogen during condensation in six different environments: pure H_2 , Ne/ H_2 , Ar/ H_2 , pure D_2 , Ne/ D_2 , Ar/ D_2 , and Ar/HD. In each en-

vironment, two bands were identified as the stretching vibrational fundamentals of SbH_2 , SbD_2 , or SbHD. In the table, we have sum-

marized the experimental results and compared them to our predicted fundamental wavenumbers, which obviously support the assignments. A spectrum attributed to the absorption spectrum of SbH₂ ($A \leftarrow X$) was obtained in Ref. [14] by the flash photolysis of stibine (SbH₃). Also, in Ref. [15] the emission spectrum of SbH₂ ($A \rightarrow X$) from 400 to 700 nm was recorded with a resolution of 12Å, and a portion of the spectrum from 480 to 530 nm was recorded with a resolution of 3 Å. We intend to compare our spectral simulations, which are currently being calculated, with these experimental spectra to confirm or refute the assignments.

as a $^{2}\Delta_{g}$ state.

References

- [5] P. Jensen, Mol. Phys. 98 (2000) 1253-1285. [6] P. Jensen, WIREs Comput. Mol. Sci. 2 (2012) 494-512.

Acknowledgements

B. O. gratefully acknowledges the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 172001). P. S. is grateful to the Alexander von Humboldt Foundation for financial support for his stay at the Philipps University of Marburg. The work of P. J. is supported in part by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. P. R. B. is grateful to Massey University for hospitality.

BERGISCHE UNIVERSITÄT **WUPPERTAL**

Figure 4: $\rho = 180^{\circ} - \angle$ (H–Bi–H). At linearity ($\rho = 0$), the $\tilde{X}^2 B_1$ and $\tilde{A}^2 A_1$ states become degenerate as a ${}^{2}\Pi_{u}$ state, while the $2{}^{2}A_{1}$ and $3{}^{2}B_{1}$ states become degenerate

[1] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO, version 2010.1, a package of *ab initio* programs. See http://www.molpro.net.

[2] P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker, J. Mol. Spectrosc. 171 (1995) 31-57.

[3] M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and P. Jensen, Mol. Phys. 88 (1996) 105-124.

[4] G. Osmann, P. R. Bunker, P. Jensen, and W. P. Kraemer, Chem. Phys. 225 (1997) 33-54.

[7] P. Jensen, G. Osmann, and I. N. Kozin, in Advanced Series in Physical Chemistry: Vibration-Rotational Spectroscopy and Molecular Dynamics, Ed. D. Papoušek, vol. 9, World Scientific Publishing Company, Singapore, 1997, 298-351.

[8] S. N. Yurchenko, W. Thiel, P. Jensen, and P. R. Bunker, J. Mol. Spectrosc. 239 (2006) 160-173.

[9] P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Research Press, Ottawa, 1998.

[10] P. R. Bunker and P. Jensen, Fundamentals of Molecular Symmetry, IOP Publishing, Bristol, 2004.

[11] P. Jensen and P. R. Bunker, J. Mol. Spectrosc. 164 (1994) 315-317.

[12] I. N. Kozin and P. Jensen, J. Mol. Spectrosc. 161 (1993) 186-207.

[13] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A. 107 (2003) 4244-4249.

[14] N. Basco and K. K. Lee, Spectroscopy Letters 1 (1968) 13-15.

[15] T. Ni, S. Yu, X. Ma and F. Kong, Chem. Phys. Lett. 128 (1986) 270-273.