THE PREDICTED SPECTRUM OF THE SbH$_2$ MOLECULE IN ITS LOWEST TWO RENNER-DEGENERATE...
An *ab initio* study of the Renner effect and spin-orbit coupling in SbH₂ and BiH₂

Bojana Ostojić, a Peter Jensen, b Peter Schwerdtfeger, c and Philip R. Bunker d

aUniversity of Belgrade, Serbia; bBergische Universität Wuppertal, Germany; cMassey University Auckland, New Zealand; dSteacie Laboratory, National Research Council of Canada, Ottawa, Ontario, Canada.

Introduction

We present the results of *ab initio* calculations for the two lowest electronic states of the Group 15 dihydrogenides, SbH₂ and BiH₂. For each of these molecules the two lowest electronic states, \(\Sigma^1 \) and \(\Pi^1 \), become degenerate at linearity as a \(\Sigma^1 \) state and are therefore subject to the Renner effect (Fig. 1). Spin-orbit coupling is also strong in these two heavy-element containing molecules. We construct the three-dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques involving these two electronic states for SbH₂. Including both the Renner effect and spin-orbit coupling, we calculate binding potential curves and the spin-orbit coupling constant for comparison.

Table 1: Calculated rovibronic term values (in cm⁻¹) for selected \(\nu_1, \nu_2, \nu_3 \) states of SbH₂ (SbH₂).

<table>
<thead>
<tr>
<th>Term Value</th>
<th>(\nu_1, \nu_2, \nu_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>1532.111</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>1337.604</td>
</tr>
<tr>
<td>(2,0,0)</td>
<td>1341.803</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>1433.737</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>1350.006</td>
</tr>
<tr>
<td>(0,2,0)</td>
<td>1361.105</td>
</tr>
</tbody>
</table>

Calculations

We have computed energies on the potential energy surfaces of the \(\Sigma^1 \) and \(\Pi^1 \) electronic states of SbH₂ and BiH₂ with the MOLPRO 2010.1 program packages [1], employing an all-electron CASSCF method, followed by an MCRI treatment. For hydrogen we used a aug-cc-pV2Z basis set, for antimony a Sapporo-KRDK-ζQZ-2012 basis set, and for bismuth a segmented all-electron contracted ESP basis set constructed for use with the non-relativistic DHK Hamiltonian.

Term Values for SbH₂

Thus far, we have carried out calculations of rovibronic term values for \(\Sigma^1 \) and \(\Pi^1 \) states of SbH₂ and BiH₂, by means of the REISSER program system [2]. Values for \(\Sigma^1 \)SbH₂, \(\Pi^1 \)SbH₂, \(\Sigma^1 \)BiH₂, \(\Pi^1 \)BiH₂, \(\Sigma^2 \)SbH₂, and \(\Sigma^2 \)BiH₂ are available, but we list only those for \(\Sigma^1 \)SbH₂ here. Simulations of rovibronic spectra are under way.

Local Mode Vibrations and Energy Clusters

We focus on the vibrational pattern of the SbH₂ molecule and the groundstate energy patterns are explained in terms of the Harmonically-Coupled-Anharmonic-Oscillator (HCAO) model (see Refs. [5, 6] and references therein), which maps a Hamiltonian representation matrix for a given state \(|n\rangle \) of the Morse oscillator basis functions \(|\nu_{11}\rangle \) with \(\nu_{11} = n \). The energy patterns depend on three parameters \(\alpha_1, \beta_1, \) and \(\Lambda_1 \). Types of \(\nu_{11} \), \(\nu_{12} \), and \(\nu_{22} \) are illustrated in Fig. 2. In reality, the characteristic patterns are sometimes ‘spoiled’ by interactions with nearby \(\nu_{11}, \nu_{12}, \nu_{22}, \nu_{33} \) states having \(\nu_{11} \approx 0 \), these states are not accounted for by the HCAO model.

![Figure 3: Rotationally degenerate level diagram for the vibrational ground state (left) and the \(\nu_{11}, \nu_{12}, \nu_{22} \) states (right) of SbH₂. The energies are plotted relative to the highest energy in each manifold. The term values are colour-coded according to the scheme to illustrate the \(\nu_{11}, \nu_{12}, \nu_{22} \) state transitions to the molecular symmetry group (9, \(\nu_{11} \), \(\nu_{12} \), \(\nu_{22} \), \(\nu_{33} \)).](image)

The vibrational energy level clusters caused by local-mode effects are accounted for by rovibronic energy clusters at high rotational excitation [5, 6]. Values are analogous to the ones formed in the \(\Sigma^1 \) and \(\Pi^1 \) electronic states of the \(\text{PH}_2 \) radical [8]. Figure 3 shows examples of this; they are term value diagrams for the vibrational ground state (left), and the \(\nu_{11}, \nu_{12}, \nu_{22} \) states (right), of \(\Sigma^1 \)SbH₂ electronic states of the \(\text{PH}_2 \) radical [8]. In both displays, we recognize the formation of four-fold energy clusters, the states in each cluster being symmetry \(\Delta \text{EC} + \Delta \text{EC} = \Delta \text{EC} \) [11] in the molecular symmetry group [9, 10]. The energy clusters in Fig. 3(left) are of Type II [12]; they include only one vibrational state, the vibrational ground state \(\Sigma^1 \)SbH₂. The energy clusters in Fig. 3(right) are formed by coalescence (increasing \(\nu_{11} \)) of two energy doublets, one doubling belong to the \(\nu_{22} \) vibrational state and the other one to the \(\nu_{12} \) vibrational state. Such clusters are of Type II [12].

Conclusions

In the matrix isolation infrared (IR) and Raman spectra, only pure \(\Sigma^1 \) states were detected, with hydrogen containing, under normal Raman conditions in different environments: pure \(\text{Ne}_2 \), \(\text{Ar}_2 \), \(\text{Ne}_2 \), \(\text{Ar}_2 \), and \(\text{Ar}_2 \). In each environment, two bands were identified as the stretching vibrational fundamentals of \(\text{SbH}_2 \), \(\text{SbD}_2 \), or \(\text{SMD} \). In the table, we have summarized the experimental results and compared them to our predicted fundamental wavenumbers, which obviously support the assignments. A spectrum attributed to the absorption spectrum of \(\text{SbH}_2 \) \(\lambda \) was obtained in Ref. [14] by the flash photolysis of tellurium (SMEH). Also, in Ref. [15] the emission spectrum of \(\text{SbH}_2 \) \(\lambda \) (400–700 nm) was recorded with a resolution of 12Å, and a portion of the spectrum from 485 to 535 nm was recorded with a resolution of 3 Å. We intend to compare our spectral simulations, which are currently being calculated, with these experimental spectra to confirm or refute the assignments.

References

Acknowledgements

Bo. R. gratefully acknowledges the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 17G1). P. R. B. is grateful to the Alexander von Humboldt Foundation for financial support for his stay at the Philips University of Marburg. The work of P. J. is supported in part by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. P. R. B. is grateful to Massey University for hospitality.