Towards higher rotational excitation:

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Dramatis personæ

Hanno Schmiedt Principal doer

Doers (do...)

Andrei Yachmenev

Sergei Yurchenko

Ponderers (answer phone, pontificate...)

Stephan Schlemmer

Per Jensen

BERGISCHE UNIVERSITÄT WUPPERTAL

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Prof. Per Jensen, Ph.D, 22nd February 2017

$\begin{array}{c} J_{J,0} \\ J_{J,1} \\ J_{J-1,1} \\ J_{J-1,2} \end{array} \end{array} \equiv \equiv$

$\Gamma_{\text{Cluster}} = A_1 \oplus A_2 \oplus B_1 \oplus B_2$ in $C_{2v}(M)$

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Rotational Energy Level Clusters

CH₄ 8-fold and 6-fold clusters 1972 Dorney and Watson H_2O 4-fold clusters (E_{rb}) 1978 Zhilinskii and Pavlichenkov 1978 Harter and Patterson Rotational energy surfaces and clusters 1991 Lehmann Local mode theory and clusters 1992 Kozin et al H₂Se 4-fold clusters observed H_2Se 4-fold cluster theory (E_{rbs}) 1993 Kozin and Jensen H₂X 4-fold cluster symmetry 1994 Jensen and Bunker 1996 Kozin et al H₂Te 4-fold clusters (exp and theory) 1997 Jensen et al Review paper on 4-fold clusters 2000 Jensen Review paper on LMT and clusters 2012 Another review paper of LMT and clusters Jensen [WIREs Comput. Mol. Sci. 2, 494–512 (2012). DOI: <u>10.1002/wcms.1089</u>]

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Are there similar effects for XH₃ molecules – say PH₃?

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Programs: XY3 and TROVE

(Theoretical Rotation-Vibration Energies)

XY3: Rotation-vibration energies for pyramidal, ammonia-type molecule in isolated electronic state, calculated variationally.

[1] H. Lin *et al., J. Chem. Phys.* **117**, 11265 (2002)
[2] S.N. Yurchenko *et al., Mol. Phys.* **103**, 359 (2005) and references given there.

TROVE.

[3] S.N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Variational rotation-vibration calculations for PH₃

 $J \le 80$

Vibrational basis set:

$$2(v_1 + v_2 + v_3) + v_{inv} + V_{bend} \le 6$$

Potential energy surface:

cc-pwCVTZ [1] refined by fitting to experimental vibrational term values [2]

[1] D. Wang, Q. Shi, and Q.-S. Zhu, J. Chem. Phys., **112**, 9624 (2000)
[2] S.N. Yurchenko et al., Chem. Phys. **290**, 59 (2003)

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Yes, there are six-fold clusters!

22nd February 2017

Rotational coordinates

- (θ, φ, χ) define orientation of molecule (*xyz*) relative to laboratory (*XYZ*).
- (θ, χ) define orientation of Z axis relative to molecule (xyz).

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

For a rovibronic eigenstate Φ_i

$$F_{J,m}(\theta,\chi) = \int (\Phi_i)^* \Phi_i \sin\theta \, dV$$

is the probability distribution for the orientation of the *Z* axis relative to the molecule.

$$|\mathbf{J}| = J\,\hbar\,\sqrt{1+\frac{1}{J}}$$

 $(\mathbf{0})$

For states with m = J (and J large), $F_{J,m}(\theta, \chi)$ is the probability distribution for the orientation of the angular momentum relative to the molecule

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

 $J\hbar$

 $F_{J,m}(\theta,\chi)$

"Top cluster states" for J = m = 40, vibrational ground state of PH₃

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Primitive cluster states | *j* PCS >

First symmetrize, e.g.

$$\Psi_{1}^{A_{1}} = \frac{1}{\sqrt{6}} \left(|1 \text{ PCS}\rangle + |2 \text{ PCS}\rangle + |3 \text{ PCS}\rangle + |4 \text{ PCS}\rangle + |5 \text{ PCS}\rangle + |6 \text{ PCS}\rangle \right)$$

$$P_6^{-2} = \sqrt{6} \left(|1PCS\rangle + |2PCS\rangle + |3PCS\rangle - |4PCS\rangle - |3PCS\rangle -$$

with similar expressions for the *E* functions....

Then invert the unitary transformation to obtain

0 rus/

$$|j| \text{PCS} \rangle = \sum_{i,\Gamma} C_{i,\Gamma}^{(j)} \psi_i^{\Gamma}, \quad j = 1, 2, \dots, 6$$

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Motivation – Ultrafast rotations

- Large angular momentum *J* poses considerable challenge to computational quantum methods.
- At large *J*, classical mechanics can be used to describe the motion
- Classical approach: Define rotational energy surface (RES)

Step 1: Change angular momentum operators to classical analogues, i.e. functions of angular coordinates:

 $\widehat{H}_{\rm rot}[\widehat{J}_x, \widehat{J}_y, \widehat{J}_z] \to H_{\rm rot}(J_x, J_y, J_z)$

Step 2: Fix length of J – vector $|J| = \sqrt{J_x^2 + J_y^2 + J_z^2} = J(J+1) h/2\pi$

Step 3: Plot $H_{\rm rot}$ radially as a function of angular coordinates with fixed |J|

On the RES, J is constant, energy varies.

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

The rotational energy surface: Explaining ro-vibrational energy clusters

Example: BiHD₂

Yurchenko et al. J. Mol. Spec 256, 119 (2009).

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

- Increasing J potentially leads to changing topology
 - ➡ Formation of energy clusters

Qualitative description of high-J states

Our aim: A quantitative description to lower the computational costs

• *Main idea:* Define quantized paths on RES to get semi-classical energies for rotational states

Calculating these paths is *much* faster than full quantum calculations

- Second idea: Use TROVE to calculate the RES by treating the vibrations quantum mechanically
- *Application:* Hot environments, i.e. large angular momentum states, where quantum calculations are of limited accuracy but very costly in terms of time and memory

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

The rotational energy surface produced by TROVE

- Use *ab-initio* (or spectroscopic) potential energy surface
- Replace $\hat{J}_x, \hat{J}_y, \hat{J}_z$ in the kinetic energy operator by classical components of \vec{J}
- Solve the vibrational $|\vec{J}| = \text{const.}$ Schrödinger equation on a grid to obtain RES also for vibrationally excited states

The semi-classical approximation

Starting point: Green's function and its semi-classical approximation

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Paths on the rotational energy surface of SO₂

- 3d-plot of RES with constant energy sphere indicating the possible paths on the surface.
- They are parameterized by the rotations of the molecule, i.e. the respective symmetry elements

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Projected RES, $p = J_x$, $q = \measuredangle(J_x, J_y)$. The analogy to well-known potential energy surface is evident

Quantization conditions

- Principal idea: The integral along certain path must be a multiple of 2π
- Paths are parametrized by the symmetry elements of the molecular symmetry elements
- The semi-classical approximation of Green's function has poles at certain values, distinguished by symmetry (even or odd multiples of 2π)

A numerical routine to find the quantized paths

- TROVE calculations produce a grid of H(p,q) for real and imaginary p
- Numerical calculations are done in *Mathematica* (simple to use and lots of integrated functions)

Results for the test-case molecule SO₂

Comparison of:

- Full quantum calculations
- TROVE generated RES & path quantization
- Effective Watson-type RES & path quantization

Result:

The semi-classical procedure lead to energies comparable to the fully quantum calculations.

More details on the results: Relative deviation for different *J* quantum numbers

- Definition of rel. deviation: $(E_{sc} - E_{qm})/E_{qm}$
- Increasing J decreases relative "error" of semi-classical calculations
- For large "k" values, the error is minimal
 - Computing time scales only with energy range in which states are calculated
 - Quantum calculations scale with $(2J + 1)^3$

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

Conclusion and next steps

Conclusion and achievement

- Attachment of semi-classical procedure to TROVE variational approach for vibrations
- Quantized energies are in good agreement with full quantum values
- Computing time is reduced for large angular momentum

Open problems and future aims

- More complicated molecules, e.g. include rotational clustering
- Can we define dipole transitions on the RES?
- Definition of Rotation-Torsion energy surface?

TROVE goes semiclassicalProf. Per Jensen, Ph.D,22nd February 2017

