

Vibrational Spectroscopy of Small Silicon-Carbides

DISILICONCARBIDE

Daniel Witsch University of Kassel Laboratory Astrophysics

Sympsium

Wuppertal 12.12.2016

Outline

3 Data and Analysis

304 half felorenzine following management

Bonding properties:

- C: single or multiple bonds
- Si: multidirectional bonds

Bonding properties:

• C: single or multiple bonds

Sia

• Si: multidirectional bonds

Bonding properties:

- C: single or multiple bonds
- Si: multidirectional bonds

Bonding properties:

- C: single or multiple bonds
- Si: multidirectional bonds

Detection of Si₂C towards IRC+10216 J. Cernicharo *et. al.*, Ap.J.Lett. L3 2015

Detection of Si₂C towards IRC+10216 J. Cernicharo *et. al.*, Ap.J.Lett. L3 2015

12.12.2016

M.C. McCarthy et. al., J.Phys.Chem. 142 (2015), 231101

Detection of Si₂C towards IRC+10216 J. Cernicharo *et. al.*, Ap.J.Lett. L3 2015

 $^{\rm b}$ from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

Detection of Si₂C towards IRC+10216 J. Cernicharo *et. al.*, Ap.J.Lett. L3 2015

12.12.2016

Laborastrophysik Universität Kassel

Laborastrophysik Universität Kassel

Laborastrophysik Universität Kassel

Details	
Rot. Temperature	$\sim 30{\rm K}$
Target Material	Si
Buffergas	$He+2.5$ % CH_4
Backing Pressure	$20\mathrm{bar}$
Buening Pressure	20.541

Laborastrophysik Universität Kassel

- 120 absoprtion features
- Calculated band origin^b $\nu_3 = 1207.34 \,\mathrm{cm}^{-1}$
- *D*'s, *H*'s taken from J. Chernicharo *et. al.*
- Assignment needed

Laborastrophysik

- 120 absoprtion features
- Calculated band origin^b $\nu_3 = 1207.34 \,\mathrm{cm}^{-1}$
- *D*'s, *H*'s taken from J. Chernicharo *et. al.*
- Assignment needed

Molecular Constants of Si ₂ C		
	$Ground^{\mathrm{a}}$	$\nu_3 = 1^{\mathrm{b}}$
A	64074.3366(44)	60347.75
B	4395.51772(41)	4463.64
C	4102.13098(62)	4156.22

values in MHz

^a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Laborastrophysik Universität Kassel

a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Laborastrophysik Universität Kassel

- 120 absoprtion features
- Calculated band origin^b $\nu_3 = 1207.34 \,\mathrm{cm}^{-1}$
- *D*'s, *H*'s taken from J. Chernicharo *et. al.*
- Assignment needed

Molecular Constants of Si ₂ C		
	$Ground^{\mathrm{a}}$	$\nu_3 = 1^{\mathrm{b}}$
A	64074.3366(44)	60347.75
B	4395.51772(41)	4463.64
C	4102.13098(62)	4156.22

values in MHz

^a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Laborastrophysik Universität Kassel

- 120 absoprtion features
- Calculated band origin^b $\nu_3 = 1207.34 \,\mathrm{cm}^{-1}$
- *D*'s, *H*'s taken from J. Chernicharo *et. al.*
- Assignment needed

Molecular Constants of Si ₂ C		
	$Ground^{\mathrm{a}}$	$\nu_3 = 1^{\mathrm{b}}$
A	64074.3366(44)	60347.75
B	4395.51772(41)	4463.64
C	4102.13098(62)	4156.22

values in MHz

^a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Laborastrophysik Universität Kassel

- 120 absoprtion features
- Calculated band origin^b $\nu_3 = 1207.34 \,\mathrm{cm}^{-1}$
- *D*'s, *H*'s taken from J. Chernicharo *et. al.*
- Assignment needed

Molecular Constants of Si ₂ C		
	$Ground^{\mathrm{a}}$	$\nu_3 = 1^{\mathrm{b}}$
A	64074.3366(44)	60347.75
B	4395.51772(41)	4463.64
C	4102.13098(62)	4156.22

values in MHz

^a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Laborastrophysik Universität Kassel

a J. Cernicharo et. al., Ap.J.Lett. L3 2015

^b α_i from CCSD(T)/cc-pwCVQZ calculations (S. Thorwirth)

12.12.2016

Vibrational Groundstate Structure

Vibrational Groundstate Structure

What do we know?

- electronic ground state: ¹A₁
- I(Si) = 0 symmetric spin wavefunction
- asymmetric stretching vibration (vib. excited state: B₂ symmetry)
- a-type transition ($\Delta K_a = 0$ and $\Delta K_c = \pm 1$)

Vibrational Groundstate Structure

What do we know?

- electronic ground state: ¹A₁
- I(Si) = 0 symmetric spin wavefunction
- asymmetric stretching vibration (vib. excited state: B₂ symmetry)
- a-type transition ($\Delta K_a = 0$ and $\Delta K_c = \pm 1$)

Similar Systems?

• H₂O?

- similar structure
- <u>BUT</u> mass in O-atom
- Cl₂O
 - Distortion due to coupling with symmetric stretching vibration

Measurement

several series have been found

Shift =
$$b \cdot m + d \cdot m^2$$

 $b \approx 0.74 \,\mathrm{cm}^{-1}$
 $d \approx 0.01 \,\mathrm{cm}^{-1}$

several series have been found

Shift =
$$b \cdot m + d \cdot m^2$$

 $b \approx 0.74 \,\mathrm{cm}^{-1}$
 $d \approx 0.01 \,\mathrm{cm}^{-1}$

several series have been found

Shift =
$$b \cdot m + d \cdot m^2$$

 $b \approx 0.74 \,\mathrm{cm}^{-1}$
 $d \approx 0.01 \,\mathrm{cm}^{-1}$

several series have been found

Shift =
$$b \cdot m + d \cdot m^2$$

 $b \approx 0.74 \,\mathrm{cm}^{-1}$

 $d \approx 0.01 \,\mathrm{cm}^{-1}$

- B'' and C'' seem to be larger than calculated values
- Different Shifts between series $(0.68 < \frac{b}{\text{cm}^{-1}} < 0.8 \Rightarrow$ Distortion?)
- Assignment needed:
 - New PGopher feature

Summary

- Experimental setup to produce cold and small silicon-carbides
- Rovibrational spectrum of the ν_3 band of Si₂C
- $B^{\prime\prime}$ and $C^{\prime\prime}$ are 1 to 3 % larger than calculated values for ${\rm Si_2C}$
- Prepared for interstellar search with EXES onboard SOFIA

Acknowledgement

- Jürgen Gauss (University of Mainz)
- Sven Thorwirth (University of Cologne)

Thank you for your attention!

Appendix

Berkeley:

- Ablation Laser: Excimer Laser
- Silicon-Carbide (SiC) Rod
- pure Helium Carrier-Gas

Kassel:

- Ablation Laser: Nd:YAG
- pure Silicon (Si) Rod
- Carrier-Gas: 2.5% CH₄ in Helium

Radiation Sources

Laborastrophysik

- Asymmetric stretching vibration of Si_2C expected to be at 8 μm (1250 ${\rm cm}^{-1})$
- Common radiation sources for IR-spectroscopy

Hodgkinson et al., Meas. Sci. Technol. 24 (2013)

- Lack of radiation sources above 5 μm
- Two main tasks: Production and Investigation

Cluster Source

Laborastrophysik Universität Kassel

Laser Ablation S	ource
Laserfrequency	355 nm
Pulse energy	40 mJ
Repetition rate	20 Hz
Helium gas	20 bar
Background pressure	0.1 mbar
Target material	SiC

