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Line list / Simulated absorption spectra

We present the first variational calculation of a high-temperature ab initio line list for the CH3 radical. It
is based on a high level ab initio potential energy surface and dipole moment surface of CH3 in the ground
electronic state. The ro-vibrational energy levels and Einstein A coefficients were calculated using the
general-molecule variational approach implemented in the computer program TROVE [1, 2]. Vibrational
energies and vibrational intensities are found to be in very good agreement with the available experimental
data.
Potential energy surface/electronic properties: RCCSD(T)-F12b /cc-pVQZ-F12 ab initio calculation with
MOLPRO. Equilibrium geometry planar; empirical adjustment of equilibrium C-H bond length.
For more information, see Ref. [3].
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Figure 1: An overview of the absorption spectrum (cross sec-
tions) of CH3 at different temperatures T = 300, 500, 1000 and
1500 K generated using our line list and the Gaussian line profile
with the full-width-at-half-maximum of 1 cm−1.
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Figure 2: A selection of the strongest absorption bands of CH3
at T = 296 K generated using the line list. A Gaussian line
profile with the half-width-half-maximum of 0.08 cm−1 was used
in production of the cross sections shown.

Comparison of experimental and theoretical term
values (cm−1) for selected 12CH3 levels.

State Γa Obs.b Ref.c Calc.d

ν1 A′1 3004.42 [4] 3002.76
ν2 A′′2 606.45 [5] 602.43
2ν2 A′1 1288.1 [5] 1281.24
ν3 E ′ 3160.8 [6] 3158.83
ν4 E ′ 1397.0 [7] 1387.26

a D3h(M) symmetry of the vibrational state.
b Experimental term value.
c Reference for experimental term value.
d Variationally computed value from Ref. [3]; TROVE calculation with basis set
Pmax = 32 [3].
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Figure 3: Emission spectra of CH3. (a) Rovibrational simulation at T = 300 K thermal
equilibrium. (b) CH3 (ν2) out-of-plane bending mode emission spectrum (dots) obtained[8]
after dissociation of CH3I→ CH3(ν2) + I∗. The continuous curve is the best fit[8] involving
the hot bands (v2 + 1) ν2 ← v2 ν2 with v2 6 9. The spectrometer slit function has a
FWHM of 33 cm−1; 19 cm−1 bandwidth ascribed to the breadth of the ∆K = 0 manifold
of transitions with varying J values. (c) Vibrational simulations at T = 1000, 2000, and
3000 K, respectively of the vibrational transitions (v2 + 1) ν2 ← v2 ν2 with v2 6 9.

Simulated Raman spectra

We have extended the applicability of TROVE towards simulations of Raman spectra and carried out a
first-principles variational simulation of the non-resonant Raman spectrum for methyl radical (12CH3) in
the electronic ground state. Calculations are based on the high-level ab initio potential energy surface
used also for the line-list computations, and polarizability tensor surfaces newly calculated by ab initio
methods. The simulations for CH3 are found to be in good agreement with the available experimental data.
For more information, see Ref. [9].
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Figure 4: A comparison between the simulated nonresonant (at T = 300 K) and an
observed resonance Raman spectrum of CH3. The experimental resonance Raman spectrum
contains transitions of CH3 and CH3I [10].
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Figure 5: A comparison between the simulated nonresonant Raman spectrum (at T =
300 K) and an observed CARS spectrum of the ν1 band Q branch of CH3 (top display) [11].
Individual contributions from R0 and R2; Placzek coefficients of 10/30 and 7/10. The
simulated spectra were convolved with a Gaussian line profile with a half-width-at-half-
maximum of 0.2 cm−1. Note that the theoretical spectra are shifted by about 1.5 cm−1

relative to the experimental CARS spectrum to account for the obs−calc difference for the
ν1 band center.
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