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The background
Conventional approximations in molecular theory

1st step Born-Oppenheimer approximation
⇒ Separate nuclear and electronic degrees of freedom

2nd step Small energetic contribution of the nuclear spin
⇒ Separate ro-vibrational and nuclear spin DOF

Molecular Hamiltonian and wave function

H = Hel +Hrovib +Hnspin

Ψ = ψel ψrovib ψnspin
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The background
The exchange principle and permutation groups

Exchange of identical fermions ⇒ Sign change in wave function
Exchange of identical bosons ⇒ No sign change

Permutation group and character table

S4 E (12) (12)(34) (123) (1234)
1 6 3 8 6

A1 1 1 1 1 −1
A2 1 −1 1 1 1
E 2 0 2 −1 0
F1 3 1 −1 0 −1
F2 3 −1 −1 0 1
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The background
The nuclear wave function

Molecular Hamiltonian and wave function

H = Hel +Hrovib +Hnspin

Ψ = ψel ψrovib ψnspin

The total nuclear wave function ψrovib ψnspin must be
(anti-)symmetric for (fermionic) bosonic nuclei.

Ro-vibrational part: Quantum numbers (J, νi )
Nuclear spin part: # of identical particles and their spin

ψrovib ψnspin = ψJ,νi ×
ψ1
nspin
...

ψg
nspin

⇒ Γ(anti)sym

g is the nuclear spin statistical weight



The question
How to find the permutation symmetry of nuclear spin states

The pedestrian way

I Construct all possible combinations of individual spin states

I Determine their total spin and permutation symmetry

Example: The H2 molecule

Configuration S2 Itot MI

↑↑ A 1 1
↓↓ A 1 −1

↑↓ + ↓↑ A 1 0
↑↓ − ↓↑ B 0 0

Cumberso
me and lengthy for large N or I
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The question
Correspondence of permutation and angular momentum symmetry

Is there any one-to-one correspondence of total spin quantum
number and the respective permutation symmetry of a molecular

system?

If yes, can I use it to simplify the calculation of the symmetry
properties?
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Preparation of the answer
Unitary symmetry of spins

Assumption No influence of nuclear spin on molecular energy levels

Implication Symmetry group of ψnspin:
Unitary group U(d), d = 2I + 1

Unitary group: The most basic transformations in quantum
mechanics

I Restriction for symmetry of nuclear spin states:
|〈ψnspin|ψnspin〉|2 conserved!

I All unitary transformations U†U = 1 fulfill this constraint.

I Dimension: 2I + 1 functions for single I
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Preparation of the answer
Unitary symmetry group: The irreducible representations

U(d) Partition λ = {λ1, λ2, . . . λd} of positive descending
integers is unambigous characterization of U(d) irrep.

I For characterization in terms of spin I: SO(3) ⊂ U(d)

Simple examples

U(2) : {2, 1} → SO(3) : I = 1/2

U(3) : {3, 1, 1} → SO(3) : I = 2, 0

There exist general rules for U(d)→SO(3)!
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Preparation of the answer
The tool: Young diagrams for irreducible representations of U(d)

Young diagrams

I A partition λ sets up a diagram of boxes: {2, 1} =

⇒ Each irrep of U(d) defines a Young diagram

I Single particle of spin I is characterized by of U(2I+1)

I Many particle states span the irreps λ = {λ1, λ2, . . . λd}
I Total spin quantum number calculated by branching rule

U(d)→ SO(3)



Preparation of the answer
The tool: Young diagrams for irreducible representations of U(d)

Young diagrams

I A partition λ sets up a diagram of boxes: {2, 1} =

⇒ Each irrep of U(d) defines a Young diagram

I Single particle of spin I is characterized by of U(2I+1)

I Many particle states span the irreps λ = {λ1, λ2, . . . λd}
I Total spin quantum number calculated by branching rule

U(d)→ SO(3)



Preparation of the answer
The tool: Young diagrams for irreducible representations of U(d)

Young diagrams

I A partition λ sets up a diagram of boxes: {2, 1} =

⇒ Each irrep of U(d) defines a Young diagram

I Single particle of spin I is characterized by of U(2I+1)

I Many particle states span the irreps λ = {λ1, λ2, . . . λd}

I Total spin quantum number calculated by branching rule
U(d)→ SO(3)



Preparation of the answer
The tool: Young diagrams for irreducible representations of U(d)

Young diagrams

I A partition λ sets up a diagram of boxes: {2, 1} =

⇒ Each irrep of U(d) defines a Young diagram

I Single particle of spin I is characterized by of U(2I+1)

I Many particle states span the irreps λ = {λ1, λ2, . . . λd}
I Total spin quantum number calculated by branching rule

U(d)→ SO(3)



Preparation of the answer
The tool: Young diagrams for irreducible representations of Sn

Partition λ = {λ1, λ2, . . . , λp} with
∑
λi = n and all λi

descending integers describes irrep of Sn
Example S3

S3 λ Young E (12) (123)

A1 {3} 1 1 1

A2 {1, 1, 1} 1 -1 1

E {2, 1} 2 0 -1



The answer
Schur-Weyl duality: Irreducible representations of same shapes correlate

Assumption Hilbertspace: HN
d := Hd ⊗Hd ⊗ . . .⊗Hd (N copies)

with: d = 2I + 1 and N number of particles

The Schur-Weyl theorem

Irreducible reperesentation of the product symmetry group
U(d)×Sn:

Γ
(N)
d =

l(λ)≤d⊕
λ`N

((λ), {λ})

(λ): Irrep of Sn

{λ}: Irrep of U(d)

l(λ) ≤ d : Fixed number of rows

λ ` N:
∑
λi = N

“Sum” of identical Young diagrams form irrep for product group
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What is it good for?
Simplification of calculations: Example H+

5

Γ
(5)
2 = ((5), {5})⊕ ((41), {41})⊕ ((32), {32})

The correspondence to usual names

Young diagram U(2) SO(3) S5 label

{5, 0} 5/2 (5,0) A1

{4, 1} 3/2 (4,1) G1

{3, 2} 1/2 (3,2) H1

Γnspin(H+
5 ) = (6A1,D5/2)⊕ (4G1, 4D3/2)⊕ (2H1, 5D1/2)

Result:
Simple numerical code to get Γnsp

in
for arbitra

ry N , I!
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Second part

Statistical state-to-state reaction rates
–

Application of Schur-Weyls duality



The question
Spin-dependent reaction rates for molecules

The well-known ortho/para species of molecular hydrogen

I No electromagnetic
transition between ortho-
and para states

I Collisional cooling
cannot flip spins

⇒ Reactive collisions?



Spin-flip probability in reactive collisions

Reactive collision Two reactants form intermediate complex
before dissociating into initial parts

I Symmetry of the intermediate complex
highly influential for reaction rates

Example: H2 + H+
3 → (H+

5 )∗ → H+
3 + H2



State-to-state reactions and probabilities

Ideal experiment Prepare and measure reactants/products in single
quantum states
Defined by: J, νi , I and permutation symmetry

Reaction rate Probability for one initial state to end up in defined
product state

Statistics No energy assumptions, only spin-statistical weights
and spin conservation

A first example: H2 + H+ → H+
3 → H2 + H+

1
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1
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1
2

1
2
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(2BA,D1/2)

0A1 E
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2AB
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Intermediate symmetry decisive for state-to-state rates

The H+
5 cation

I Molecular symmetry group not yet fully determined
Ab-initio surfaces flat!

⇒ For reactions like H2 + H+
3 → (H+

5 )∗ → H+
3 + H2

⇒ Expectation: Different ortho-to-para ratios for H2 and H+
3

First results:

Full S5 MS group: P(ortho-to-para H2) = 9/50
Smaller group, only H+ released: P(ortho-to-para H2) = 4/135
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Wrap-up: Schur-Weyl, Young, and reactive collisions

First part: Representations of the nuclear spin wave functions

Schur-Weyl duality Prescription for correlation of spin and
permutation symmetry

I No restriction on I or N, easy to implement

Second part: Reactive collisions

State-to-state rates Specific state transitions
E.g. ortho-to-para in H2 + H+ reaction

Intermediate complex Symmetry decisive for reaction paths
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Thank you for your attention!

And greetings from Cologne

Schmiedt, Jensen, Schlemmer; JCP 145, 074301, (2016);
Doi: 10.1063/1.4960956


