EMPIRICAL POTENTIAL ENERGY SURFACES FOR THE ELECTRONIC GROUND STATES OF BeOH, C3 and HCO+

Some of the authors of this publication are also working on these related projects:

- Study of recombination rate coefficients of H3+ (View project)
- Energy cluster formation in H2X and H3X molecules (View project)

9 authors, including:

- Per Jensen
 - Bergische Universität Wuppertal
 - 337 publications
 - 6,814 citations
 - See Profile

- Renia Diamantopoulou
 - University College London
 - 2 publications
 - 13 citations
 - See Profile

- Jonathan Tennyson
 - University College London
 - 940 publications
 - 25,185 citations
 - See Profile

- Sergei N Yurchenko
 - University College London
 - 195 publications
 - 2,554 citations
 - See Profile

All content following this page was uploaded by Per Jensen on 29 August 2015.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
EMPIRICAL POTENTIAL SURFACES FOR THE ELECTRONIC GROUND STATES OF BEOH, C3H+, AND C3H

Theorietische Chemie, Bergische Universität Wuppertal: I. Forsung Chi Mbpah, S. C. Galleguillos Kempf, I. Keppler, G. Winterhoff, P. Jensen
Department of Physics and Astronomy, University College London: R. Diamantopoulou, J. Tennyson, S. N. Yurchenko
Faculty of Science, Ochanomizu University: T. Hirano

Introduction
To simulate molecular spectra we require an analytical, parameterized representation of the potential energy surface (PES) for the particular electronic state of the molecule under study. The PES parameter values can be obtained by least-squares fits of 1. ab initio energies or 2. experimentally derived rovibronic energy spacings.

The experimental data are mostly too limited for the determination of a PES, so we normally use Method (1) to determine initial parameter values and then refine these by Method (2). If the experimental information is too limited for the refinement, we simultaneously fit the experimental and the ab initio energies with an appropriate weighting of the two data types.

For BeOH/BeO, experimental data and ab initio energies are taken from Mascalitolo et al. (2013). For C3H+, the experimental data are compiled by Neele and the ab initio energies are newly calculated at the RCCSD(T)/aug-cc-pVQZ level of theory. Finally, for C3H and its isotopologues, the experimental data are compiled from diverse sources and the ab initio energies are newly calculated at the CCSD(T)/aug-cc-pVQZ level of theory.

Morbid Calculations
We are presently applying the extended Morbid program to obtain PES for the electronic ground states of BeOH (BeOH, HCO), and C3H. In this approach the following analytical expansion for the potential energy function is used:

\[V(\Delta r_{ij}, \Delta r_{kl}) = \sum \alpha_{ijkl} \phi_{ijkl} \left(\Delta r_{ij} - \Delta r_{ij}^0 \right) \left(\Delta r_{kl} - \Delta r_{kl}^0 \right) \]

\[(i - 1) \phi_{ijkl} = \text{the quantum of the distance } r_{ij} \text{ between the } i \text{th and } j \text{th nucleus; } (i + 1) \phi_{ijkl} = \text{the other quantum of the same distance.} \]

In order to optimise those in a fitting to a set of experimental data, we use Method (2) to determine initial parameter values and then refine these by Method (1). For the future we hope to further improve the potential energy parameters for HCO by adding the available experimental data of DCO\(^+\) to the input data of the fitting.

Conclusion and Outlook
The work is supported by the Deutsche Forschungsgemeinschaft (Project Ji 247/24-1) and the Japan Research–Wienoch-Bergero, S. Yurchenko, W. Theil, and P. Jensen, J. Mol. Spectrosc. 245, 120-140 (2007).