A THEORETICAL STUDY OF NICN IN THE $^{2}\Delta$ ELECTRONIC GROUND STATE

TSUNEO HIRANO, REI OKUDA, and UMPEI NAGASHIMA, Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; PER JENSEN, Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany.

The three-dimensional potential energy surface of $\tilde{X}^2 \Delta_i$ NiCN has been calculated *ab initio* at the MR-SDCI+Q+ $E_{rel}/[Roos ANO (Ni),$ aug-cc-pVQZ (C, N)] level of theory. The equilibrium geometry derived from this surface is linear with $r_e(Ni-C) = 1.814$ [1.8292(28), 1.8293(1)] Å and $r_e(C-N) = 1.167$ [1.1591(29), 1.1590(2)] Å, where the values in brackets are r_0 values for the ground $\Omega = 5/2$ spinsubstate determined experimentally by Kingston *et al.*^{*a*} and Sheridan *et al.*,^{*b*} respectively. From the electronic structure given in terms of natural orbitals, and the Mulliken population^{*c*} of +0.83 on Ni, we conclude that the Ni-C bond is basically ionic but less ionic than those of FeNC and CoCN. The electron from Ni goes into the Ni-mediated CN σ^* orbital, giving the electron distribution Ni^{+0.8}(CN)^{-0.8}. The $3d-\pi^*$ backbonding is not observed. Molecular constants determined from the *ab initio* potential energy surface by perturbation methods and in variational calculations will be reported: For example, $\omega_1 = 2198 \text{ cm}^{-1}$, $\omega_2 = 254 \text{ cm}^{-1}$, and $\omega_3 = 511 \text{ cm}^{-1}$. A severe Fermi resonance between $2\nu_2$ and ν_3 is expected. A spin-orbit interaction scheme including the *ab initio* predicted spin-orbit coupling constant $A_{SO} = -613 \text{ cm}^{-1d}$ will be presented.

^aC. T. Kingston, A. J. Merer, and T. D. Varberg, J. Mol. Spectrosc., 215, 106 (2002).

^bP. M. Sheridan and L. M. Ziurys, J. Chem. Phys., 118, 6370 (2003).

^cComputed at the MR-SDCI/[Wachters+f (Ni), aug-cc-pVTZ (C, N)] level of theory

 $^{^{}d}$ cf. the unperturbed A_{SO} -value of -594.2(5) cm⁻¹ for $X^{2}\Delta$ NiH; J. A. Gray, M. Li, T. Nelis, and R. W. Field, J. Chem. Phys., 95, 7164 (1991).