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With a large set of basis functions, the calculation of the matrix elements of
the system Hamiltonian can become unwieldy. Making use of symmetries of the
system can provide significant simplification by guaranteeing many elements of
the matrix are zero. The ExoMol project has taken advantage of this in the
generation of line lists for several molecules. In the following, we shall describe
this procedure for our latest and largest molecule, (both in terms of the number
of atoms and the size of the symmetry group) ethane (CyHg).

This begins with the observation that the Hamiltonian of the system com-
mutes with a permutation of identical nuclei and an inversion of the atomic
coordinates. Restricting ourselves to only ‘feasible’ elements (ones obtainable
by rotation of the molecule) defines the molecular symmetry group. For ethane
with torsion, this is the Ggg group. One can understand the origin of all ele-
ments by combining a rotation about the C-C axis—first diagram column, %3
indicating the number of elements (including the identity) and (123) being an
example—with a rotation perpendicular to this axis and a feasible inversion-type
coordinate—12 elements in total. A single CH3 rotation gives 3 more elements

to combine with, hence the full group is Gsg. In practical calculations, the
rotational, torsional, vibrational coordinates are separated. This leads to an
ambiguity in the torsional angle p on the far right diagram. This can be appre-
ciated intuitively by noticing that an increase in 27 of this angle, where each
CHj3 group moves in an opposite direction, does not bring the molecule back to
its starting point. The angle must therefore be 47 periodic with an element £’
added to the group which increases it by 2.

Because the Hamiltonain commutes with the group elements, wavefunctions
transform to linear combinations of wavefunctions with the same energy, and
the group operation can be represented by a matrix which transtorms a vector
of wavetunctions. It is elementary in group theory that by performing unitary
tranformations on the wavefunction set, we can ‘reduce’ these matrices to being
block diagonal where each block is only can only be one of a finite set of ‘irre-
ducible’ representations. Crucially, Hamiltonian matrix elements between basis
functions transforming irreducibly are only non-zero if both the representation
and the component number is the same.

Gr36(E M) Representations

To be able to utilize the symmetry group, we require explicit matrices for
every operation and representation. This is not as yet available in the literature,
particularly in the 4 dimensional G representation, and is element that this study
will provide. A few examples are shown below the table.
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Coordinate Classes

To create symmetry adapted basis sets, we analyse the transformations of
the internal molecular coordinates due to the group operations. In general,
coordinates are naturally grouped into sets which transform into each other.
In the case of ethane, there are 5 classes: 1 C-C bond, 6 C-H bonds, 6 C-
C-H angles, 4 independent H-C-H dihedral angles, and the torsion angle p.
Reduced Hamiltonians are the created for each class by integrating out the
other coordinates with the group state, described by

H Q') = (0p] (O] . (0, HT™10,) ... [05) 10)

where Q" is the coordinate set for a given class and p, q, . . ., r are the other coor-
dinates. This reduced Hamiltonian is then solved with an appropriate basis set
providing the eigenfunctions. These are then ‘symmetrised’ which transforms
them so that they transform irreducibly. The symmetrised functions from each
class are combined into a function of all the variables and once again sym-
metrised so that the matrix of the full Hamiltonian using these functions as a
basis set is block diagonal.

6............

Torsional Wavetunctions

Below are examples symmetrised wavetunctions for the torsion coordinate
p. The first is a ground state wavetunction which is totally symmetric under
Gsg(E M), as expected. The negative ‘peaks’ have a periodicity of 2/3w starting
at m/3 corresponding to the minima of the potential-the staggered position.

The second example shows a pair of ¥ symmetrised wavefunctions. Under
group operations, these are mixed. A salient feature of these wavefunctions
is that they are odd under a 27 rotation, the E’ operation of the extended
molecular symmetry group. We label such states with d symmetry.
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