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Infroduction Kinetic Simulations of the Reactant lon Population

Background: Short PhOfOlYSiS and Reaction Time Us.ing APECI, photolysis takes place during 400 ps at 185 nm, resulting in 270 pptV ozone. The same short photolysis time, but increased CO, and NO, mixing ratios, lead to a more diverse reactant ion population ® The experimentally determined mass spectra
The ionizati hani iling i With the VUV (APPI) lamp 1.8 ppbV ozone are produced. are well reproduced by the kinetic simulations
o e ionization mechanisms prevailing in ] . . . . .
. - Synthetic Air APECI/APPI Synthetic Air + 0.3 % CO, Ambient Air
negative ion atmospheric pressure mass —CO.H.Of . L
0 10° x10° 32 APPI Left: The VUV lamp vields 2 Small deviations are observed, most probably
spectrometry are not yet fully unraveled 2510 250" _ 257 HNO,NO), - mp ylek g o ions in th :
B — 5 oo higher ozone mixing ratio. In ue to missing reactions in the reaction
e Determination of the influence of different s 5§ 2 % 2| . ambient air this results in a scheme
. . . 0 O ) w — — - . .
reagent ions on the ionization mechanism § % ——CO,(H,0) 3 02(H or higher concentration of .
. CL . . . o ——CO_(H, Oy I - . e : .
and analyte ion product distribution is 815 o 915 co, : 1.5 / oz(Né)aj N [0,(H,0),]- after 1 ms than For.short photolysis times, as realized in the
necessary £ o or £ —0, = 2 with less ozone present. In the capillary APECI source, only small amounts of
= _ L _
| o .% 11 02(H20)' % 1 Oz(Hzo)_ % 1 equilibrium state [CO,(H,0)] ozone are generated
e Different ionization methods, e.g., APPI, 2 z 2 2 5 O, % . and [0,(NO)(H,0)]- are also
: : | 3 0.5] — ) - ..
APCI, DART or electron generation via the §°'5 S 7 = [ present in addition to ® In synthetic air:
photoelectric effect (APECI) appear to exhibit . \\ | . . ' ' 0 S~ \\ — e ° 0/ 1 A== ' , - | - [NG,(H,0)]" :
arcelv identical ionization mechanisms I W\ 0.02 0.04 0.06 0.08 0.1 0 2 4 0.02 004 006 008 01 012 014 0.16 018 0.2 0 0.5 1 0.1 0.2 0.3 0.4 0.5 ® Superoxide water clusters are the only
7 i 7 t : - ]
! Iig Y . vion 111 <10 tme s <10 me s x10” time [s] reactant ions observed after 1 ms, longer
PTOWING TEABENT 10N BENETATON After 1 ms 108 APEC|  Left: With lower ozone mixing reaction times lead to CO,~
e |onization methods such as APPI or APECI Above: In synthetic air, both ionization Right: Increasing the carbon reaction time 257 ratio, [NO,(H,0)]" is the only
oroduce large amounts of ozone when methods yield e.f.sentially similar diqxide conc'entration Igads to a . o o reactant ion a?fter 10 ms. After ® |Increasing the carbon dioxide
oxygen is present in the irradiated ion source reactant ion populations: shift of the ion population from % 21 . the jcran'sfer.tlme (1 ms) | concentration leads to a shift in the
. Only O, and [0,(H,0),]~ reagent ions are superoxide to CO,". 08 3 ’ equilibrium is not reached in reactant ion population towards CO,~ in
region : : e S 15| HNO _NO; he cAPECI i h Pop 4
observed after 1 ms transfer time. The mass spectrum recorded with = 5 3773 the C lon source, thus the simulation toward CO.— in the
. - . . — D06 £ —NO_H_O :
e Small molecules, which are ubiquitous in T rium i APECI shows CO; ~ as most 5 = 22 superoxide water clusters and . 3
Equilibrium is reached after 50 ms; in bund ) oablv d 3 s / —o, CO - are present as reactant experiments
atmospheric pressure ion sources (e.g., CO,) this case [CO4(H,0)]" is the only reactant abundant ion, probably due to Soar E 0. (H.O): e ATEP
: L : missing reactions in the kinetic T I 2" 2772 lons. o : :
or generated during the ionization process ion present. . . 2 S 0.5 In ambient air the amount of ozone produced
_ T reaction scheme regarding the 0.2 c . .
(e.g., O; or NO;) may influence the ionization CO.—- conversion reactions NO, s L \ controls the reactant ion population
X ' L‘ / . \ g : ; : :
process 0 ' ' ' | ' —— ' 0 AN . .
20 30 40 50 rg?z 70 80 90 100 0 0.5 -31 0.02 0.04 . 0.06 0.08 0.1 co; o LOW ozone mIXIng ratlos (APEC') |ead to
e Rate constants of reactions regarding these <10 me [s] o, NO.~-ions after long reaction times, which
X )
molecules and their ions are well known . . . 8T :
, o are unreactive towards most analytes.
from e.g. atmospheric chemistry Longer PhOiOIYSIS and Reaction Time (1 ppmV ozone) In both, synthetic air and ambient air, [CO,;(H,0)]" is the most abundant reactant ion. Right: The mass spectrum O : : Y :
5 of APECI in ambient air Sosel Short reaction times allow that superoxide
e The reaction time, i.e., the dwell time in the Synihe’rlc Air Ambient Air with a reaction time of 304_ 0,H,02 Is present as reactive species
collision dominated regions of the sampling approx. 1 ms reproduces 8
«10° x10° L : . ® High ozone mixing ratios (APPI) lead to a
stages of the mass spectrometer seems to be 25 - 25 the kinetic simulation. 02} higher - mount ofgCO ) w(hich i)s Core
a crucial factor determining the primary ion o o J 5 : X
. s 2 - S 2f — . Ll DU | || | W | W | reactive than NO,~
distribution 3 ——CO,(H,0) 2 ——CO,(H,0) 30 35 40 45 50 55 60 65 70 75 80
S i S ) m/z . . . .
915/ — 315 CO, ® Short reaction times (capillary ion source)
A ) £ G £ —NO,(H,0) Ny oo Left: In the APPI mass spectrum and/or the absence of neutral photolysis
. O - O,(H,0). —0 4172 i i i i .. .
pproach: S 1 _Oz(HzO)_z g 1 % sf ambflent air wllthcaorea?t'oi‘ products (APLI) are beneficial to obtain
] : : £ 35 = I ime of approx. 1 s CO,~ (water : : .
e Using APPI and APECI with different transfer §O | §05 ,‘ 5 (H3O)-3 08 clusters) gfe observedx favorable reactant ion populations consisting
. - U e | 2V 272 § . . —
times ° l}( ° T Sosel Superoxide water clusters are solely of superoxide and CO,
. . . . . | | | | | - | | | | | 2 CO; H -
e Kinetic simulations are used to reproduce %0 0.5 1ﬁ \ 0.02 0.04 0.06 0.08 0.1 % 05 1 N 0.02 0.04 0.06 0.08 0.1 & 4 .obs.erv.ed instead of NO".’.
the experimental results x107 time [s] x107 time [s] 5 o md.lcatmg @ lower NO, mixing L"er d fUl’ e
H ied " H - cludes 152 Above: A longer photolysis time results in higher ozone mixing ratio. An ozone Above: A considerably higher ozone mixing ratio results in a drastically increased CO;™ - } . ratio durmg(;che rEeasureIment
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