

Introduction

A feasible ion/molecule reaction pathway with halobenzene dopants in dopant-assisted atmospheric pressure photo ionization (DA-APPI) selectively adds a positively charged phenyl-ring to particular compound classes^[1] (cf. fig. 1). Systematic experimental data revealed that specific criteria, such as the nucleophilicity and sterical hindrance are key parameters to promote the formation of the [M+Ph]⁺

Fig. 1: Experimentally investigated compounds. Group 1: Dominating [M+Ph]⁺ formation; Group 2: [M+Ph]⁺ formation in less abundance; Group 3: no substitution observed.

In this contribution the experimental observations are further investigated with ab initio calculations to provide a deeper understanding of the critical chemical properties of the analyte which lead to the formation of the substitution product. The impact of the halogen-type and the single reaction steps along the proposed pathway are investigated as well.

Computational Details

Software package: Gaussian09, Revision C.01^[2] for calculations GaussView 4.1^[3] for visualization

Machine:

UNIX-based computer cluster, 4×16-Core CPUs (6282SE AMD Opteron; Advanced Micro Devices GmbH, Dornach, Germany) and 32×16 GB memory

Typically 8 cores with 10 GB memory were used for each calculation

Ab initio studies on the mechanisms of ipso-substitution observed in DA-APPI

Level of Theory:

- Density Functional Theory (DFT)
- B3LYP exchange correlation functional^[4,5]
- standard Pople 6-311+G(df,2p) basis^[6]
- Grimme's empirical dispersion correction^[7] tight convergence criteria for geometry optimizations
- ultrafine integration grid

Proposed Mechanism:

Dopant⁺

<u>Calculations (without dispersion correction):</u>

- pyridine was chosen the as analyte (Group 1)
- reaction mechanism for each halobenzene (PhF, PhCl, PhBr, PhI)

<u>Results</u>

- A weak intermediate (IS1) where the lone pair of the nitrogen is attracted to the positive charge (located mostly at C_1) is always observed.
- A transition state (TS1) follows, where pyridine breaks the π -system of the dopant (very low for PhF⁺).
- For fluoro- and chlorobenzene a second intermediate (IS2) is found, where C_1 is in a sp³ hybridization ([M+Dopant]⁺).
- A simultaneous cleavage of the C₁-X bond with formation of the C₁-N bond is observed for X=Br,I (possibly due to sterical hindrance).
- Subsequent cleavage of the C_1 -X bond for X=F,Cl is energetically demanding for F (due to strong C-F bonding) and easy for Cl.
- Overall, the reaction is thermodynamically favorable for Cl, Br, I while it stops at the adduct for F. This is exactly what has been observed in the mass spectra^[1].

<u>Question:</u>

- Why is the *ipso*-substitution observed with pyridine but not at all with pyrrole? Calculations:
- Search for IS and TS according to the mechanism shown above.

<u>Results:</u>

- TS1 is very unfavorable since two aromatic systems are destroyed simultaneously.
- IS2 is very similar to the TS (H and Cl are gauche regarding the C_1 -N bond).
- Reaction is highly endergonic since the
- The positive charge is poorly delocalized.

<u>Alexander Haack¹</u>; Clara Markert¹; Tiina Kauppila²; Hendrik Kersten¹; Thorsten Benter¹

Calculation Methods

- <u>Methods for Reaction Pathway:</u> Reactant, product and intermediate structures (IS) were guessed and optimized to a local minimum on the
- Potential Energy Surface (PES). Scans of critical coordinates were performed to propose
- initial guesses of transition states (TS), which were subsequently optimized.
- Frequency calculations were performed for each minimum/first-order-saddle-point to confirm the desired number of negative eigenvalues.

Reaction Mechanism for different Dopants

Fig. 3: Gibbs free energy along the reaction of pyridine with each halobenzene^[1].

reaction steps

Thermochemistry:

- For stable structures, the corrections to the enthalpy H_{corr} and the Gibbs free enthalpy G_{corr} were calculated from the partition functions.
- With the electronic energy ε_0 the reaction enthalpy $\Delta_R H$ and the Gibbs free reaction enthalpy $\Delta_R G$ can be calculated according to:
- $\Delta_R H = \sum_{products} (\varepsilon_0 + H_{corr}) \sum_{reactants} (\varepsilon_0 + H_{corr})$
- $\Delta_R G = \sum_{products} (\varepsilon_0 + G_{corr}) \sum_{reactants} (\varepsilon_0 + G_{corr})$

2-Cyclohexen-1-one / Cyclohexanone

<u>Question:</u>

In which way is the reaction supported by the double bond in 2cyclohexen-1-one (Group 2) in comparison to cyclohexanone (Group 3)?

Calculations

Search for IS and TS according to the mechanism shown to the left.

<u>Results:</u>

- For 2-cyclohexen-1-one, the reaction path is reasonable, although clearly exergonic only for PhBr⁺ and just slightly for PhCl⁺.
- TS1 is already high in energy for 2-cyclohexen-1-one (67 kJ/mol rel. to IS1). Without the hydrogen bond stabilization to the phenyl-ring and the delocalization of the positive charge through the resonance stabilization of the enone, TS1 is even more unfavorable for cyclohexanone (~80 kJ/mol rel. to IS1).
- So far, no IS2 has been found for cyclohexanone. Every optimization procedure led back to IS1.
- The stabilization of the TS1/IS2 is the main reason for the difference between the two structurally similar compounds.
- Resonance stabilization also affects the products, where cyclohexanone is ~20 kJ/mol less favorable than 2-cyclohexen-1one for both, PhCl and PhBr.

Oxazole

<u>Question:</u>

Which position of the oxazole attacks the halobenzene ion: the oxygen, the nitrogen or the carbon in between?

<u>Calculations:</u>

Geometry optimization and thermodynamics for the three different products.

<u>Results:</u>

- O: The two rings are orthogonal (89.8°), hence there is no overlap of the π -systems \rightarrow unfavorable (strikingly high Gibbs) free reaction enthalpy, possibly poor delocalization of the positive charge in the oxazole ring).
- C: The oxazole ring opens so that the carbon remains in a sp² configuration. Stabilization of the positive charge (mostly located at benzyl position) through the oxygen in the aldehyde group and the phenyl ring.
- N: Angle between rings is 44.6°. Hence there is an overlap between the π -systems (same in pyridine); positive charge distributed throughout the oxygen/the entire ring.
- Only the attack of the N atom leads to an exergonic reaction.

C - product

¹Physical & Theoretical Chemistry Wuppertal, Germany (Institute for Pure and Applied Mass Spectrometry) ²Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland

Conclusions

- The calculations support the proposed mechanism of the *ipso*-substitution. For some analyte/dopant combinations, an adduct [M+Dopant]⁺ is formed (even the global minimum for pyridine + PhF⁺), while it is missing for others (pyridine + PhBr⁺).
- Delocalization of the positive charge through any type of π -system lowers the intermediate structures and products in energy and hence promotes the formation of the substitution product.
- A lone pair as nucleophile is helpful (pyridine works better than pyrrole), however, the overall reaction enthalpy also depends on factors such as the overlap of π -systems in the product (oxazole + PhCl⁺ works better at C- than at Oposition).
- Aromatic N-compounds seem to react most favorably
- In general, the reaction is favored by increasing size of the halogen.
- Ab initio calculations supported the experimental results (each calculation shown is consistent with the experimental data). They reveal a deeper insight into the fundamental chemistry behind the observed mass spectra.

Outlook

- Intermediate structures for oxazole will be calculated.
- Isoxazole and furan will be compared with oxazole to gain a better insight of the unfavorable oxygen attack.
- Secondary (piperidine) will be compared with tertiary amines (*N*-methylpiperidine).

Literature

[1] Kauppila T.J. et al. (2016): J. Am. Soc. Mass Spectrom., 27(3), 422-431.

[2] Gaussian 09, Revision C.01, Frisch, M.J. et al. Gaussian, Inc., Wallingford CT (2009)

[3] Dennington, R.; Keith, T.; Millam, J.: GaussView, Semichem Inc., Shawnee Mission (2007)

[4] Becke, A.D. (1993). J. Chem. Phys., 98(7), 5648.

[5] Lee, C.; Yang, W.; Parr, R.G. (1988): Phys. Rev. B, 37(2), 785–789.

[6] Ditchfield, R. et al. (1971): J. Chem. Phys., 54(2), 724-728.

[7] S. Grimme (2006): J. Chem. Phys., 124(3), 034108.

Acknowledgement

Financial support by iGenTraX UG (Haan, Germany) is gratefully acknowledged.

Fig. 2: Example of a PES with a minimum (Min) and a transition state (TS)

reaction	$\Delta_{\rm R}$ G [kJ/mol]
xazole + PhCl ⁺ (O)	165.9
xazole + PhCl ⁺ (C)	24.5
xazole + PhCl ⁺ (N)	-45.0

N - product