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use of the photoelectric effect at atmospheric pressure

UV-light interaction with metal

surfaces yields low energy electrons

electron capture forms negative ions

superoxide, Oy, represents main reagent ion when oxygen is present

material

Photoexcitation (< 390 nm) of TiO, leads to the formation of e"in conduction
band and h*in valence band.
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Figure 1) Proposed mechanism for photocatalysis

on TiO; surfaces [3]
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Photoemissive measurements:

* radiation is directed through a quartz window onto the sample

* adjustable acceleration voltage is applied to the probe plate
* distance between probe and detector plate is variable

* detector plate is connected to the electrometer to measure

Photocatalysis
e chamber background pressure is adjustable down to 10 mbar

* chamber is pressurized with N3 or synthetic air to vary gas
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Figure 2) Custom designed flow tube type photoreactor

source design [2]
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Figure 3) Custom designed measurement chamber

Photocatalytic measurements:

* radiation source is mounted on top of the quartz window

* target plate is adjustable in height, photocatalytic material is
exchangeable

* analyte or other compounds are added to the main gas stream up or
downstream of the irradiated volume

* coupling to NOx monitor to investigate photocatalytic activity

e coupling to MS to check for generated gas phase ions and to determine

gas phase composition (post ionisation)
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Experimental Setup:

Esquire 6000 QIT, Bruker Daltonic

custom designed flow tube type
reactor (Fig. 2))

Sto PhotosanNOX (TiO»);
monocrystaline ZnO; Cu; Al

ATL Atlex KrF*- excimer laser
(248nm); NUV-Diode (390 nm);
low pressure mercury lamp
(PenRay) (185/254 nm)

custom designed chamber with
detector and target plate (Fig. 3))

Keithley 602 electrometer;
Textronix oscilloscope

NO;,; LOPAP instrument
Pfeiffer Vakuum TurboDrag Pump
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lon intensities [(M*) vary with
laser power Praser to the
power of the number of
photons required to generate
photo electrons provided the
corresponding transitions are
not saturated:
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left: At elevated pressures a
minimum value of acceleration
voltage is necessary to yield a
measurable ion current. The
different measurements are not
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absolute signal intensity because
of changing experimental
conditions (gas phase, electrode
distance and laser power).
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Gas

Surprisingly, the photoemissive measurements do not show any significant
differences between air or nitrogen being present in the chamber.
Previous investigations revealed a strong dependency on the oxygen ratio
for photoemissive as well as photocatalytic effects. For cAPECI-MS the
presence of oxygen is necessary. In contrast, the used commercial
photocatalytic dispersion paint (TiO2) shows photocatalytic activity even in
an oxygen-free atmosphere, which is traced back to the fact that water
and/or oxygen is adsorbed on the surface (see figure 1)).
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Conclusions

Photocatalytic measurements:

e VUV irradiation (185 nm) leads to generation
of gas phase negative ions when aluminum
as well as TiO, dispersion paint is used as
photoemissive material

* measured ion distributions are consistent
with previous cAPECI-MS measurements

* photocatalytic conversion of NO is
observable using the TiO, dispersion paint at
390 nm

e NUV irradiation (390 nm) does not generate
any gas phase ions detectable by the MS

Photoemissive measurements:

* dependencies of the photoelectric yield on
the acceleration voltage and the pressure
are as expected

* at elevated pressures no photoelectric yield
without applying acceleration voltage

e variation of laser power shows a surprisingly
low dependency of the photo current

* no significant difference between air or
nitrogen, most probably caused by gas
Impurities

* used materials do not show significant
differences in their photoemissive properties

Outlook:

* presented results are pre-examinations,
further MS-experiments will follow

e use of light source which is tunable in energy
and power (e.g. OPQOs)

* further investigations on gas phase
dependencies (water vapor, noble gases,
compounds with high electron affinities e.g.
SFs)

e differentiation between photo and ion
currents
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