Production of NH₃ in N₂-Corona Discharges and ⁶³Ni-Sources: Unequivocal Identification and Quantification

Introduction

Challenge:

- Find a rational for [nM+NH₄]⁺-signals frequently observed with plasma source driven API methods (e.g. APCI) without taking into account "contamination" of the bulk gases with ammonia.
- Different mechanisms conceivable
- → Electrolysis of water and nitrogen
- \rightarrow Surface reaction of H- and N-atoms formed by dissociation of water and nitrogen
- Hypothesis: *in-situ* ammonia generation in the presence of nitrogen and water; required energy supply and subsequent surface catalysis.

Experimental approach:

- Replacement of nitrogen by argon \rightarrow search for N-source
- and water by deuterated water
- \rightarrow exchange of H-atoms by deuterium atoms in the ammonia molecules
- Unequivocal ammonia detection and quantification with a selective ammonia-measuring device ("NH₃-LOPAP")

Methods

Detection

Mass spectrometer

- micrOTOF mass spectrometer (TOF-MS), **Bruker Daltonics**
- amaZon speed ETD (QIT-MS), Bruker Daltonics
- Esquire3000 (QIT-MS), Bruker Daltonics
- LOng Path Absorption Photometer (LOPAP), Quma Elektronik & Analytik GmbH

Ionization Methods

- Atmospheric pressure chemical ionization source (APCI)
- VUV Kr discharge RF lamp (APPI) emitting 10.0 eV and 10.6 eV photons (Syagen)
- Custom ⁶³Ni β-radiation source
- Custom capillary atmospheric pressure chemical ionization (cAPCI) source [2,3]

Analyte treatment

- **RF-activation:** Custom RF stage ("ion tunnel")
- GC: 7890A, Agilent Technologies Inc.
- **Transferline:** Custom temperature-controlled GCtransferline
- Analyte: C₄ C₂₄ Even carbon saturated fatty acid methanol esters ("FAME-Mix"), Supelco Analytical

Data Analysis

- Data Analysis, (version) Bruker Daltonics
- mMass (version 5.5.0; open source software)

Fig. 1: Schematic drawing of the transfer line/ionization source [1].

Different mechanisms conceivable

- Dissociation, electrolysis and ionization with corona discharge in the same region possible
- Adsorption of N- and H- atoms on surrounding metal surfaces may promote catalyzed ammonia generation via heterogeneous reactions

₂₀₀₀ b)

Mass spectrum of methyl palmitate using cAPCI/QIT-MS showing [M+H]⁺ as base peak Fig. 5: Insert a: Expanded mass range 277 - 311 ([2M+H+NH₃]⁺; [2M+H₃O]⁺) Insert b: Expanded mass range 539 - 590 ([2M+H]⁺; [2M+H+NH₃]⁺; [2M+H₃O]⁺).

Mass spectrometers with different ion transfer stages and settings treat equilibrated ion populations differently. For QIT MS this is also true for the ion detection phase

- TOF-MS employed: Softest transfer and detection conditions, with many cluster signals
- QIT: Significantly harsher conditions. Depending on settings the dimers (Esquire QIT) or the entire cluster distribution are "lost" (amaZon QIT)

Nele Hartmann; Sarah Peters; Marco Thinius; Jörg Kleffmann, Hendrik Kersten, Thorsten Benter

500

- ionization processes [4]
- APPI provides max. 10.6 eV to the reacting system \rightarrow no ammonia production route feasible
- Fig. 6: Mass spectrum of methyl palmitate using cAPCI/TOF-MS showing [2M+H]⁺ as base peak (41%) and [M+H+NH₃]⁺ as second largest species (36%) - the entire distribution is shown in figure 7.

- Ammonia production is indirectly observed with corona discharge and β -radiation excitation by [M+H+NH₃]⁺
- APCI, cAPCI and ⁶³Ni are principally providing sufficient energy to drive N_2 and H_2O dissociation as well as

- Generation of ammonia-adducts only in the presence N_2
- N₂ thus serves as N source
- Upon flushing the system with Argon, the ammonia cluster intensities strongly decrease over time

Physical & Theoretical Chemistry Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions

Mechanism:

- Several NH₃ sources in API are conceivable
- NH₃ contamination of nitrogen gas supply
- \rightarrow inconsistent with absence of $[(NH_3)_n+H]^+$ cluster distributions, which are well established in literature [5]
- \rightarrow inconsistent with absence of NH₃/ND₃ distributions in D₂O experiments
- \rightarrow inconsistent with unequivocal NH₃ detection in the LOPAP measurements
- NH₃ production via an electrolysis based mechanism
- \rightarrow inconsistent with ammonia detection using the ⁶³Ni-source
- NH₃ production via gas phase initiated dissociation/ionization mechanism, followed by surface catalyzed heterogeneous reactions
- \rightarrow currently consistent with all results presented in this contribution

Outlook:

- Systematic measurements on the water dependency of the extent of NH₃ generation each with LOPAP and mass spectrometry
- Further experiments with photoionization using LOPAP and mass spectrometry
- Experiments using different ion source surface materials

Literature

- [1] M. Thinius "Studies on the ion transmission and ion activation," Master Thesis, Department of Chemistry, University of Wuppertal, 2015.
- [2] Y. Brachthäuser et al. "GC-MS Performance of a Novel Capillary Atmospheric Pressure Chemical Ionization (cAPCI) Source," in Proceedings of the 61th ASMS Conference of Mass Spectrometry and Allied Topics, Minneapolis, Minnesota, USA, 2013.
- [3] S. Klee et al., "Capillary atmospheric pressure chemical ionization using liquid point electrodes", RCM 28, 1591 -1600, 2014.
- [4] S. Peters "Entwicklung eines Messgerätes zur selektiven und sensitiven Messung von Ammoniak (NH₃) und Ammonium (NH_{a}^{+}) in der Atmosphäre", 1. Year progress report, 2014
- [5] M.M. Shahin, "Mass-Spectrometric Studies of Corona Discharges in Air at Atmosperic Pressure", J. Phys. Chem. 45 (7), New York, 1966

Acknowledgement

Technical support is gratefully acknowledged: Bruker Daltonics GmbH, Bremen, Germany Quma Elektronik & Analytik GmbH

nance eristics	Parameters
elength otion tube	560 – 690 nm 0.95 m
	1%
ange on	0.07 - 900 ppbV 70 pptV

Fig. 7: Cluster distribution observed with a) DA APPI/TOF-MS

Stretched sections of the mass spectrum showing the absence of a hydrogen/deuterium distribution.

- Assumption of ammonia impurities being responsible for adduct formation is discouraged

- Results strongly support the assumption of water as hydrogen source, since H₂O leads quantitatively to [M+H+NH₃]⁺ and D₂O to [M+D+ND₃]⁺ clusters, respectively

- Missing H/D distribution renders a simple exchange reaction implausible