

Introduction

In the long term we pursue the design of a plasma source for selective preparation of protonation reagents to be used with most standard mass spectrometers.

Choice of the power supply

APPI (VUV lamp) RF power supplies are readily available for a broad range of MS and fully integrated in the respective hard- and software. Moreover, they are known for their stability and robustness [1].

Discharge characteristics

The discharge is classified as a high density plasma in an electrodeless, helical resonator configuration [2]. Typical operation pressures range between 10⁻¹ and 10¹ mbar, which is compatible with the conditions in the first differentially pumped stages of most API instruments.

Choice of discharge gas

H₂ is cheap, readily available, and safely supplied using modern gas-generators. The discharge characteristics are closest to helium and with sufficient collisions abundant H_3^+ is selectively prepared as the initial single protonation reagent.

Question of concern in this contribution:

Can these power supplies sustain an open H_2 plasma for the preparation of sufficient amounts of cleanly prepared protonation reagents to achieve pptV level detection limits while maintaining kinetic control in the ion source?

Methods

MS	H-TOF with custom ion transfer optics (TOFWerk AG, Switzerland)
	Quad-IMS HPR-60 (Hiden Analytical, UK)
RF power supplies	Syagen/Morpho APPI power supplies compatible with:(i) Thermo Fisher instruments(ii) Waters instruments
gases	H ₂ and He (99.999 %; Messer Group GmbH, Germany) 1 ppmV benzene, toluene, xylene (BTX) in N ₂ (custom)
current meter	610C (Keithley Instruments, USA)
glass tubes	12 mm o.d., 10.1 mm i.d. (#8252, Schott AG, Germany)
UV/VIS spectrometer	AvaSpec-3848 (Avantes BV, Eerbeek, The Netherlands

H₂ plasma for the generation of protonation reagents with a standard APPI power supply

BTX and 1 sccm H_2 .

Fig. 7: H_3^+ intensity as a function of pressure in the first differentially pumped region of the quadrupole system

Tobias Kutsch, Kai Kroll, Kirsten Haberer, Thorsten Benter, <u>Hendrik Kersten</u>

Experimental Setups

flow rates:	0
ignition pressure:	H H
operating pressure:	Н

pressure optimum

(quadrupole setup)

Narrow pressure optimum.

Owing to the open geometry in the quad setup, any pressure changes significantly *affect* the *plasma* dynamics as well as the overall ion *transfer* and subsequent *ion* molecule reactions.

precise pressure control required

The positive ion current measured on the first skimmer vanishes upon application of a positive voltage on the capillary end cap?

Yes... however, not as expected.

a pressure of 1.5 mbar. optical emission (quadrupole setup) 6e+4

Optical resolution currently insufficient to determine population changes of individual plasma species.

higher resolution spectroscopy required

at 1.5 mbar.

Physical & Theoretical Chemistry

Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

Conclusions & Outlook

- The standard APPI power supply generates a *stable* and *reproducibly ignitable* open H_2 plasma between 1 and 5 mbar.
- H₂ flow rates between 1 and 20 sccm
- Positive currents leaving the plasma zone are in the order of $40 \ \mu A$ (corresponding to 10¹⁴ singly charged species per second) - sufficient for any MS application.
- Additional DC voltages reproducibly impact the RF plasma, however, not as expected.
- Mass spectra with abundant protonation reagents and efficient analyte protonation were recorded. However, a higher purity discharge gas and optimized reagent guidance are required.

next steps:

- Storing and pushing H_3^+ with additional high voltage DC pulses?
- resolution spectroscopy to Higher determine concentration changes in specific plasma species.
- Precise confinement and guidance of charged plasma species (varying electrode shapes inside the glass tube; red parts in fig 3)
- Fundamental investigation of the high voltage DC impact on the RF plasma.
- Gas supply from a hydrogen generator with higher purity (two orders of magnitude).

Literature

- [1] Kersten, H., Kroll, K., Haberer, K., Brockmann, K.J., Benter, T., Peterson, A. : Design Study of an Atmospheric Pressure Photoionization Interface for GC-MS. Journal of the American Society for Mass Spectrometry. 27, 607-614 (2016)
- [2] Liebermann, M.A. and Lichtenberg A.J.: Principles of Plasma Discharges and Materials Processing. 2nd Edition, John Wiley & Sons Inc., Hoboken, NJ, USA (2005)

Acknowledgement

Equipment support of this work by the German Research Foundation (DFG) - project <u>KE 1816/1-1</u> - and TOFWerk AG is gratefully acknowledged.