

Introduction

Ion transformation processes, in particular ion molecule reactions, as subsequent steps upon directing generated ions to the analyzer region may significantly change the outcome of a mass spectrum. Once the ionization process instantaneously transfers the neutral sample out of its equilibrated state the ion population relaxes into a new equilibrium. Usually the thermodynamically most favorable constitution that includes ions significantly differs from its neutral counterpart. The extent of mismatch increases with increasing complexity of the sample and increasing number of total collisions occurring after the ionization process. To keep the initial information, which does reflect the neutral sample composition the number of ion molecule collisions after initial ion formation needs to be minimized. This type of process control is termed "kinetic control" within the present framework.

Approach:

- Application of one of the strongest known gas phase acid, H_3^+ as the main primary charge carrier.
- \rightarrow Generation of H₃⁺ either by a high pressure DC plasma or a low pressure RF discharge
- Subsequent quantitative transformation of H₃⁺ into reagent ions (N_2H^+ and N_4H^+) for less exothermic analyte protonation. Direct exposure of the analytes to the plasma afterglow is largely avoided.
- Maintaining the protonation reactions of the analyte under kinetic control

Methods

MS	HTOF with custom ion transfer optics, TOFWERK AG, Thun, Schwitzerland CTOF, TOFWERK AG, Thun, Schwitzerland	
lon Source	Custom high pressure DC plasma source, custom low pressure RF discharge source	
Gases	Helium 5.0 and Nitrogen 5.0, Messer Group GmbH, Krefeld, Germany	
Analytes	 Benzene, toluene, m-xylene in nitrogen (1 ppmV), CARBAGAS AG, Kümligen, Schwitzerland Custom gas mixtures: Benzene, toluene, o-xylene in nitrogen (10 ppmV, 1 ppmV, 10 ppbV) All gases were used without further purification 	
Gas Flows	All gas flows are controlled by mass flow controllers, MKS Instruments Deutschland GmbH, Berlin, Germany	

- (1-3) The gas phase sample is introduced into the transfer quadrupole at variable axial positions, determining the ionization time and the time for subsequent ion ("transformation processes") to occur.
- A steady flow of primary reagent ions $(H_3^+ \text{ or } N_2 H^+)$ expands coaxially into the quadrupole within the first differentially pumped pressure region.

Two alternative ion sources are mounted on a custom Time-of-Flight mass spectrometer: A high pressure DC plasma (i) and a low pressure [ppbV RF discharge (ii). A steady flow of primary reagent ions (H_3^+ or N_2H^+) expands coaxially into a quadrupole within the first differentially The high pressure DC plasma source shows a linear response for a benzene/toluene/m-xylene (BTX) mixture in a range of 5 – 100 ppbV pumped pressure region (1 – 5 mbar), which corresponds to roughly a million collisions with background particles per second, estimated from simple gas kinetic theory. A sample introduction stage allows to add the neutral sample at precisely determined positions into the (figure above). An approximate estimate of LODs values of the BTX mixture is obtained from the signal-to-noise ratio of the analyte measured with a blank. LOD values in the low pptV range are obtained and a high degree of protonation with up to 97 % is observed (c quadrupole, which in turn determines the total number of collisions. The extent of kinetic control with respect to the detection limits is assessed as a function of mixing ratios, amount of primary reagent ions and sample introduction position. Furthermore, the ability of the table above) chemical system to dissipate excess energy from the protonation step is evaluated by the observed degree of fragmentation.

High pressure DC plasma (i)

The DC plasma is operated with helium at elevated pressure, which The RF discharge source is operated directly with hydrogen at low leads to the production of metastable helium atoms (He^M). In pressure. The discharge source includes a helical coil resonator (HCR) providing sufficient RF energy to sustain the discharge. The RF reaction cascade H_3^+ is formed by Penning ionization of H_2 and subsequent reaction steps with neutral hydrogen [1]. plasma leads to the direct production of H_3^+ (For more details cf. Poster TP 422)

Evaluation of a kinetically controlled chemical ionization setup

Kai Kroll, Duygu Erdogdu, Tobias Kutsch, Hendrik Kersten, Thorsten Benter

Experimental setup

molecule reactions

Ion Sources

Low pressure RF discharge (ii)

Kinetic vs. Thermodynamik Control

composition in the matrix.

The reaction system is not allowed to equilibrate before mass. The reaction system has time to equilibrate, driven by the Gibbs analysis. The ion population resembles closely the neutral analyte energy. The resulting ion system may represent the neutral analyte composition, but this is rarely the case.

Constant analyte signal ratios with varying reaction times indicate the absence of competitive reactions between protonated analytes and thus strongly suggest a kinetically controlled ionization process.

The figure above displays the protonated BTX signal distribution for three different sample introduction positions in dependence of the transfer quadrupole background pressure for a 10 ppm BTX mixture. \rightarrow The observed signal distributions are not sensitive to the quadrupole pressure and sample position.

The upper figure on the left shows the total signal intensities and the lower figure on the left the signal distributions for a BTX mixture introduced at three different positions into the quadrupole at the same pressure

 \rightarrow The analyte signal intensities increase with the distance of the sample introduction position to the quadrupole exit.

All these observations strongly suggest, that the analyte protonation step is under full kinetic control with regard to all three sample introduction positions

Kinetic control

Physical & Theoretical Chemistry

Wuppertal, Germany

(Institute for Pure and Applied Mass Spectrometry)

	•
Concl	nusions

- Both ion sources, the high pressure DC plasma and the low pressure RF discharge source lead to comparable mass spectra when employing nitrogen as bulk gas
- Subsequent quantitative transformation of H₃⁺ into the reagent ions N_2H^+ and N_4H^+ for less exothermic protonation is demonstrated
- \rightarrow degree of protonation for the used analytes is > 95 %
- \rightarrow Exclusive formation of [M+H]⁺ ions observed.
- Protonation of an BTX mixture under full kinetic control is demonstrated with LODs reaching low pptV levels.

Outlook

- Evaluation of a spark discharge plasma as a further alternative ion source for the formation of H_{3}^{+} as primary charge carrier.
- A more detailed investigation of the extent of kinetic control with respect to detection limits, mixing ratios, amount of primary reagent ions and sample introduction positions.
- Comparison of the proton capacities of the different ion sources and determination of the total primary and analyte ion currents.
- Temporally resolved experiments with pulsed ion sources (laser ionization) to determine the absolute reaction times in the quadrupole.
- \rightarrow Numerical simulations of reaction kinetics and ion trajectories in the quadrupole
- Search for suitable reagent ions for a "reagent cascade" to further lower the excess energy upon protonation

Literature

- Mueller, D.: Brachhaeuser, Y.; Hartmann, N.; Hillen, R.; Erdogdu, D.; Brockmann, K.; Kersten, H.; Benter, T.; Development of a novel ion source for μ -64th ASMS Conference on Mass pectrometry. spectrometry and Allied Topics, San Antonio, TX, USA
- Kersten, H.; Kutsch, T.; Kroll K.; Haberer, K.; Benter, [2] H₂-plasma for the generation of protonation reagents with a standard APPI power supply, 64th ASMS Conference on Mass spectrometry and Allied Topics, Indianapolis, IN, USA (2017)

Acknowledgement

Generous financial support TOFWERK AG, Thun, Switzerland is greatly acknowledged.

	Limit of Detection* [pptV]	Degree of Protonation**
າຍ	34	> 96
e	10	> 95
	5	> 97
	*estimate from S/N = 3.	**[M+H] ⁺ / ([M] ⁺ + [M+H]) ⁺

Thermodynamic control