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Outlook

® Fluid dynamic simulation of the background gas flow: SPARTA
Direct Simulation Monte-Carlo (DSMC) (version 21 Mar 2016) [3] o
e lon trajectory calculation: Custom developed Verlet ion Electric Field

is separated from the quad region

}y

Verlet Trajectory

Thus, a comprehensive numerical model of an ion transfer system must incorporate all
those interactions, which renders such a numerical calculation rather complex.

Trajectory Analysis / entrance plate with an orifice (diam. 1.4 mm). 0
Visualization Scripts Background gas and ions enter the quad region -

Parhcular!y, the calculatl-on of coulombic pértlcl.e-partlcle- interactions requires trajectory integrator, space charge calculation with Barnes-Hut (Comsol Multiphysics) Integrator (Python/NumPy/Matplotlib) throuch the orifice
computational acceleration via fast approximation techniques, e.g. Barnes-Hut Tree method *Geometry ug :
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We present numerical simulations of ion dynamics in a transfer quadrupole of a e Custom-developed data analysis / transformation scripts (Sparta DSMC) 20 Interactive Visualizations / rod pairs, a variable potential offset between
commercial instrument, incorporating background gas interaction and space charge. utilizing NumPy / Matplotlib Izl Slpacie CelllEle) Particle Density Analysis the entrance plate and the rods was assumed.
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Axial Charge Transport: Field, Space Charge and Gas Dynamics
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orifice. This eventually leads to steady
state conditions.
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lon Temperature

The acceleration of ions in an electrical field leads to increased kinetic
energies and thus to increased energy transfer in collisions with
background gas particles. When the acceleration is moderate, this can be
treated as an increased effective ion temperature [5], which may strongly
impact on the chemical dynamics of ionic species under such conditions.
Analysis of simulated ion velocities allows an estimation of the effective
ion temperatures in the transfer quadrupole under investigation.
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top: Average effective ion temperature and average particle density
(spatially resolved radial plot, s.c.f. = 0). Note that ions penetrating deep
into the focusing field reach very high effective ion temperatures, up to
several thousand Kelvin.

right: Average effective ion
temperature. Even in the
region close to the central
axis of the quadrupole, the
average ion temperature is
significantly increased

(> 2500 K).
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The presented results are a first step into the
comprehensive simulation of ion transfer
stages. Planned future work will include:

® Optimization and integration of additional
space charge calculation methods (e.g. Fast
Multipole Methods) and hardware
platforms (GPGPUs) to increase the number
of simulated particles

e Refining the DSMC model of the
background gas flow, particularly the
boundary conditions in the low pressure
region

® |ntegration of chemical reactions between
ions and neutrals and between ions
considering the increased effective ion
temperatures

® Modeling of internal states of molecules,
enabling advanced ion temperature and
reaction models

Conclusions

® A code for the integration of ion trajectories
considering space charge was developed and
coupled to fluid dynamic simulations with a
DSMC method and a solver for electric fields

® A transfer quadrupole in a commercial mass
spectrometer was successfully modeled

® |on transport in the quadrupole is highly
sensitive to the background gas flow

® The quality of the fluid dynamic simulation of
the gas flow in the quadrupole region is
critical. The currently available solution
underestimates the background pressure in
the quad region

® Space charge has only a minor effect on axial
transport of ions into / through the
quadrupole, and is thus most likely not
limiting the transfer through the quadrupole

® |ons reach very high effective temperatures
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