

Multiple-corona N_2/H_2 ion source for AP GC-MS coupling stages

<u>Steffen Bräkling¹</u>; Walter Wißdorf¹; Hendrik Kersten¹; Thorsten Benter¹; Bradley B. Schneider²; Tom Covey²; Peter Kovarik²

Introduction

The hyphenation of gas chromatography (GC) with atmospheric pressure ionization (API) mass spectrometers is gaining increasing attention. The comparably high investment costs for API instruments are partly alleviated, when the GC API stage is interchangeable with conventional LC API methods such as ESI and APCI. As EI is not feasible at atmospheric pressure we are developing a method, which is based on the generation of N_2H^+/N_4H^+ reagent ions by a corona discharge, which in turn wide analytical coverage, guarantee particular towards the typical GC analyte spectrum.

Challenges for the first version:

- Reproducible and constant operation of the corona discharge without sparking.
- Generation and detection of N_2H^+/N_4H^+ as the primary reagent ions. Therefore, particular attention must be paid to the purity of the supplied gases, specifically to the partial water pressure.
- Assessing method sensitivity and chromatographic performance with first GC runs.

Methods

Instruments

- Sciex API 3200 Triple Quadrupole MS
- custom-made temperature controlled GC transfer line with sheath gas supply
- Agilent Technologies 7890A GC System
- TR-Dioxin-5MS 30 m x 025 mm D x 0.1 u GC column (Thermo Scientific)

Ionization

- multiple corona discharge in H₂, addition of N_2
- high-voltage supplied by the APCI infrastructure of the MS (8.2 kV)
- gas flows are controlled by mass flow controllers (Bronkhorst Mättig GmbH)

Chemicals

- nitrogen (liquid N₂ boil-off, Linde AG)
- hydrogen, helium (5.0, Messer Griesheim)
- aniline, methanol (Merck)

Experimental parameters

- A nitrogen flow of 750 sccm was supplied to the ion source for sustained atmospheric pressure condition.
- The dimensioning of the vacuum system essentially limits the accepted hydrogen flow by the instrument. For the presented work H_2 was supplied with 1 - 11 sccm.

Figure 1: CAD drawing of the custom made ion source and GC transfer line.

- HV connector for the corona discharge. Modified from the original APCI infrastructure of the MS.
- (2) inlet for the N₂ supply
- (3) temperature controlled GC transfer line
- (4) inlet for the H_2 supply

number and positions of corona needles

The pressure dependency of the corona discharge (convoluted with the sampling efficiency) was evaluated by means of the recorded TIC. Fig. 5 depicts a linear signal increase between 700 and 1100 mbar, levelling off at 1200 mbar. Below 700 mbar the discharge started sparking with apparent signal instabilities. Note, that the sparking event is always influenced by the position of the corona needles and the transfer line.

Experimental Setup

The hydrogen flow surrounds the corona needles. The nitrogen is supplied to the reaction volume as an eluent sheath gas or, alternatively, directly mixed with the hydrogen flow.

Figure 2: Cross section and gas flows of the ion source.

Discharge characteristics

6 3 (Y-position

Figure 4: Picture of the corona Y-Position. 107

Figure 5: Impact of the operating pressure on the total ion chromatogram.

Over time a slight decrease in ion intensity was observed, as exemplarily shown in fig. 6. Notable abrasion of the needles might be the cause, however, this surely requires more detailed investigation in a long-term measurement, which needs to consider the impact of the discharge on the skimmer material as well

The number of installed corona strongly impacts the needles recorded TIC. Interestingly, the maximum of six needles shows least ion intensity. The best provided performance symmetric Y- arrangement of three corona needles.

The first GC peaks showed tailing and peak width (10% definition) of > 4s, probably due to a relatively large reaction volume. Further insertion of the transfer line lowered the volume to some extend (limited by the spark breakdown between the needles and the transfer line) and peak width < 3 s were observed. Note, however, that the transfer line/needle distance effects the discharge as well.

Theory of reactant ion formation

1.	$H_2 + H_2^+$	\rightarrow	$H_{3}^{+} + H$
2.	$H_{3}^{+} + N_{2}$	\rightarrow	$N_2 H^+$
3.	$N_2H^+ + N_2$	\rightarrow	$N_4 H^+$
4.	$N_2^+ + H_2$	\rightarrow	$N_2H^+ + H$
5	$N_{2}H^{+} + H_{2}O$	\rightarrow	$H_{-}O^{+} \rightarrow N_{-}$
J .		/	1130 1112
5.	$H_30^+ + H_20$	\rightarrow	$[(H_2 0)_n H]^+$

The presence of water leads to rapid formation of proton bound water clusters, which increase the proton affinity of the reagent ions and decrease the range of amenable compounds. Protonation is only possible for PA(reagent gas) < PA(analyte molecule).

Figure 7: Corona mass spectrum in N_2/H_2 at atmospheric pressure (1 sccm H_2 , 700 sccm N_2).

At atmospheric pressure nearly all ionic species initially generated in a plasma of a pure hydrogen/nitrogen mixture, rapidly lead to the formation of N_2H^+ and N_4H^+ as primary reagent ions [1,4].

Table 1: Proton affinities of important substances [2][3].

Substance	Proton affinity [kJ/mol]
H ₂	422.3
N ₂	493.8
H₂O	691.0
(H ₂ O) ₂	808.0
C ₆ H ₇ N (Anilin)	882.5

Spectra in N_2/H_2

In particular the second and third water cluster dominate the recorded mass spectra in this first version of the GC-APCI source, when operated at elevated pressures. Lowering the pressure causes sparking with N₂H⁺

 N_3^+ , Ar^+ and O_2^+ as the prevailing species. Both spectra leaks indicate and contamination. For APCI conditions in this setup analytes are expected to be protonated by water clusters. The next GC-API versions specifi-

cally tackles contamination issues to provide the desired reagent ions in appreciable amounts.

Chromatographic performance

Samples of aniline in 1.2methanol between 0.1 and 10 ng/µl were injected with a split of $\overline{0.8}$ 1:100. Carrier gas was helium with a flow of 1.5 sccm. The m/z $^{\overline{0}}$ 0.4 range was set 10 between and 500 Da and the transfer line was Lowest amount of

1 pg on column was clearly visible. Appreciable linearity was observed for injection between 1 and 500 pg on column. Higher concentrations led to saturation effects.

width

¹: Physical and theoretical chemistry Wuppertal, Germany (Institute of pure and applied mass spectrometry) ²: Sciex Concord Ontario, Canada

Conclusions

Version 1.0 of the multiple-corona N_2/H_2 GC-APCI proved the possibility to sustain a corona discharge in a small volume for sufficient and stable primary reagent ion formation.

Preliminary GC runs showed lower pg on column sensitivity and appreciable linearity for several injected aniline solutions.

Outlook

Things to work on for version 2.0:

- Reduction of water contamination to generate mostly N_2H^+ and N_4H^+ as primary reagent ions.
- Careful reduction of the reaction volume to improve chromatographic peak shape.
- Improved needle alignment and isolation towards skimmer and transfer line. To prevent skimmer abrasion an additional protection electrode around the skimmer should be considered.

Literature

[1] S. G. Lias, J. F. Liebman, R. D. Levin. Evaluated gas phase basicitis and proton affinities of molecules, heats of formation of protonated molecules. Journal of Physical and Chemical Reference Data, 13(3):695-808, **1984**. [2] D. J. Goebbert, P. G. Wentold. Water dimer proton affinity from the kinetic method: dissociation energy of the water dimer. European journal of mass spectrometry, 10(6):837-846, **2004**.

[3] A. J. Dempster, LII. The ionisation and dissociation of hydrogen molecules and the formation of H₃. *Phylosophical Magazine Series 6,* 31(185):438-443, **1916**.

[4] J.K. Kim, L. P. Theard, W. T. Huntress Jr. Proton Transfer reactions from H_3^+ ions to N_2 , O₂ and CO molecules. *Chemical Physics Letters,* 32(3): 610-614, **1975**.

Acknowledgement

Financial and technical support by Sciex (Concord, Canada) is gratefully acknowledged

reaction volume [cm³] Figure 11: Impact of the reaction volume on the peak