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Intfroduction

The significance of coulombic interactions between charged particles (“space charge”) is one of the e Custom simulation framework [7] lon-Stability Diagram [1]: Non-Resonant and Resonant Ejection Scan: A mass scan in a QIT can be performed by Fourier-Transform-Scan:
primary challenges for the design of ion traps and similar devices [1]. Quadrupole lon Traps (QITs), o ] ] 0.2 L : TTF seqguentiallv eiectine ions from the tra : . . :
lons have to be z- and r-stable to be trapped, which is auxilliary RF seq y €] 8 P.
while still being commonly used in commercial mass spectrometers, are particularly sensitive to such ® Background gas collisions are modeled with hard sphere scattering g, =0.908 indicated by the area where both re io::overla in the trapping RF y o _ o _ trapping RF IOD excitation / _
space charge effects [2]. e |dealized potentials of trapping field, defined as analytical functions [8]: 0.0 4 y & pinthe | S—— Abasic ejection technique is increasingthe | | S mirror charge detection
The established . de of QITs is to eiect i tiallv from the trap in d q ¢ ' stability diagram ) N\ 74 trap-RF voltage, which takes ions to the ) \ Za
e established operation mode of Qlfs Is to eject ions sequentially from the trap in dependence o Diotal = Po + P (A1P1 + AxPy + A3P3 + AyPy+...) Commonly, QITs operate with an stability parameter a,=0, stability boundary at g, < 0.908 (non-resonant
their mass [1]. The ejected ions are detected with an ion detector outside of the ion trap volume. —~0.2- : . . . . ~ 2o FFT
_ _ _ S . U + V cos () r2 952 N in this case ions remain stable with an g, < 0.908. ejection)
Alternatively, ions can be trapped and excited by an electric stimulus, which leads to a mass by — b, — © - . J ‘
o , . L 0= 9 2 2 The mass dependent stability parameter g.isgivenby: 7 e NOC | e
depenc?lent coherent oscillation of the trapped ions [3,4,5,6]. This ion os.C|II'at|on can ther\ be detect.ed A — field Srder eoefficient 0 —0.41 L T, Most commercial instruments applyan | L T T
by dedicated electrodes and Fourier transformed to a mass spectrum, similarly to techniques used in ¢ V53 _ Jp2 Zietable eV ro = radial trap size e = elementary charge oCti additional auxiliary RF voltage with an integer . _ . S
FT-ICR or Orbitraps. Q) = trap RF Frequency b5 = 5 | q, = . . €jection . . Alternatively, a mass spectrum can be acquired without ejecting ions from the trap[5,6]:
T —-0.6 r stable m(rd +222)Q2 2z = trap height m = ion mass ratio (e.g. 1/3) to the main trap RF to the cap _ _ _ )
We have used numerical simulations of ion dynamics in an idealized QIT to investigate the U = trap DC Voltage 4 5 o 4 | | | | | | # electrodes. This leads to resonant ejection Trapped ions are coherently excited by a signal applied to the cap electrodes. The
characteristics of different detection modes in terms of sensitivity to space charge effects, to estimate V = trap RF Voltage (Uyt) b, = 82" —2427r" + 32 0.00 0.25 050 0.75 1.00 1.25 1.50 etector from the trap with a 9,<0.908. oscillation frequency of the excited ions is mass dependent and can be measured by
feasible operation boundaries for instruments based on the individual detection principles. t = time 7"3 4z detecting the mirror charge of the ions on the cap-electrodes.
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