

- modifying the experimental conditions in a controlled sequential manner

MS:	micrOTOF (Bruker Daltonics, Bremen, Germany)
Ion Source:	custom nano Electrospray Ionization (nESI) Source [2];
	Bruker CaptiveSpray nanoBooster™ (Bruker Daltonics, Bremen, Germany)
Gas Supply:	Nitrogen 5.0 (Messer Industriegase GmbH, Germany).
	All gas flows are controlled by mass flow controllers (MKS Instruments,
	Germany)
Chemicals:	all chemicals were purchased from Sigma Aldrich, Germany, and used without
	further purification

Ion-solvent interactions in nanoESI-MS: Characterization of charge depletion and charge conservation (supercharging) processes

Christine Polaczek; Alexander Haack; Marco Thinius; Walter Wißdorf; Hendrik Kersten; Thorsten Benter

[2] M. Thinius, M. Langner, H. Kersten, T. Benter, Impact of chemical modifiers on the cluster chemistry during electrospray ionization, Proceedings of the 63th ASMS Conference on Mass Spectrometry and Allied Topics, San Antonio, TX, USA (2016)

alculated	∆G va	ues of	the	reactio	on (M=metl	hyl	ami	ne)	•
	[M(sol	vent) _n	H]+ -:	> M +	(sol	lvent) _n H	+			

n	∆G [kJ/mol] MeOH	ΔG [kJ/mol] ACN
1	195.1	190.6
2	118.2	136.8
3	62	157.5
4	51.1	_

• ion-solvent interactions are governing factors on the travel from ion solvation to the ion transfer stages • experimental and computational results are in good agreement regarding the interactions between amines and MeOH or ACN • further experimental and computational investigations with different analytes and solvents are planned

Physical & Theoretical Chemistry Wuppertal, Germany

Institute for Pure and Applied Mass Spectrometry

- Bruker Daltonics, Bremen, Germany
- iGenTraX UG, Haan, Germany
- ZGS Bergische Universität Wuppertal