

Influence of cluster/de-cluster reactions on ion separation in differential mobility spectrometry (DMS) in dependence of the analyte structure

<u>Florian Stappert¹</u>; Christine Polaczek¹; Walter Wissdorf¹; Hendrik Kersten¹; Thorsten Benter¹; Bradley B. Schneider²; Tom Covey²

Introduction

Background:

The ion separation in differential mobility spectrometry (DMS) is based on the different of ions under high and low field mobility conditions. Mainly as result of cluster/de-cluster and hard-sphere interactions the reactions mobility depends on the corrected electric field strength E/N. The resulting dependence described by the " α -function". By adding chemical modifiers to the transport gas the cluster effect can be enhanced, depending strongly on chemical properties of the modifier and the analyte.[1] There is some evidence in the literature for analyte/modifier combinations that allow the prediction of the degree of dispersion in DMS by small structural variations.[2][3] In addition to the steric structure of the substances used, other material properties such as basicity are also important.[3]

Previous results:

The cluster/de-cluster reactions are one major driver of ion separation using DMS, which was shown by suitable simulations of cluster dynamics.[4] This effect depends on the used modifier and the DMS temperature. To check this thesis the dispersions of Substance P signals were examined under varying conditions. The results showed a decreasing cluster effect with increasing temperature, as well as an influence of the modifier structure, which in turn leads to a significant influence of the analyte structure. [5]

Present results:

Results of DMS measurements of various amines and di-amines are presented using typical modifiers to investigate the analyte structure dependence. The same analytes are investigated in supercharging experiments and the results are compared to get a deeper insight into the underlying molecular level processes.

Methods

Instr	ruments:	
N/C		

MS System: DMS System: Ion Source: Data Processing

Chemicals: Gases:

Modifiers

Analytes: Analyte solutions SelexION[®] DMS (SCIEX) Turbo VTM (ESI-mode; **SCIEX**) Analyst[®] 1.6.2 (SCIEX)

6500 Triple Quad[™] (SCIEX)

Nitrogen (boil-off from LN_2) Acetonitrile (ACN; HPLC grade), Methanol (MeOH; HPLC grade), 2-propanol (iso-prop; HPLC grade) Various amines and polyamines 0,1 mmol/ L analyte in ACN/H₂O with 0.05 % of formic acid

Experimental parameters:

- Constant DMS-temperature of 150 °C ("Low"-setting)
- Liquid flow of 10 μl/min
- Injection with a 2.5-ml-syringe by use of the built in syringe pump
- Modifier concentration of 3 % ("High"-setting)
- Ion-transfer optimized for each analyte for a maximum signal

Figure 1: Dispersion plots of protonated n-butylamine and n-hexylamine depending on the modifier present in the DMS transport gas (Nitrogen; N₂): without modifier (100 % N₂), with ACN (3 %), with MeOH (3 %) and with iso-propanol (3 %)

Similarly to the above results, in the absence of any modifier, hard-sphere collisions are not mainly responsible for the curve shapes. Note the inverse behavior the phenylenediamines as compared to the results with modifier present.

Without additional modifier or with ACN present in the transport gas, \geq aniline behaves 1,4-phenylenediamine, indicates comparable surrounding at the protonated site.

Aniline is quantitatively deprotonated with iso-propanol, which is in accord with supercharging experiments, see below

Comparison with supercharging experiments

Table 1: Main differences of reaction conditions in supercharging and DMS experiments

ift formation of

ilibrium cluster

DMS	Supercharging
ESI	nESI
High temperature	Low temperature
Dynamic processes driven by high/low field conditions	Swift formation of equilibrium cluste distribution at AP

(Supercharging) Processes

Aliphatic and aromatic Amines

Linear aliphatic amines

Without modifier present, a positive voltage (CV) compensation The declining plots expected. (Type B) are normally explained by polarization effects with the nitrogen transport gas. Independently of that, the hard-sphere collision interactions are very weak.

Note the always larger shifts observed for the smaller analytes. This suggests larger average cluster sizes caused by smaller steric hindrances or simply a larger relative change of the impact cross section.

Aromatic amines and di-amines

Main issues:

• Are the chemical mechanisms comparable or even identical? • Note: Much higher collision energies prevailing in DMS

Matching results:

- charge depletion with alcohols
- in general, similar trends in signal distribution
- anaylte-dependent ACN cluster distribution
- no double protonation of phenylenediamines observed

detailed results on poster WP 307: C. Polaczek et al.; Ion-solvent interactions in nano-ESI-MS: Characterization of Charge Depletion and Charge Conservation

Linear Di-amines

In absence of a modifier, the weight molecular di-amines behave like amines and show a CV decline in the plots, while a growing carbon behavior.

increasing interaction.

Figure 3: Dispersion plots of single protonated linear di-amines with growing carbon chain without modifier in the DMS transport gas

Figure 4: Dispersion plots of singly protonated linear di-amines with growing carbon chain length in dependence of the modifier present in the DMS transport gas: ACN, left (3%), MeOH, center (3%), and iso-propanol, right (3%)

Adding ACN or MeOH as modifier to collision cross section seems to be iso-propanol the shift of the small the transport gas causes an increase the most plausible explanation. of the cluster effect, while the order Analyte overlapping is also evident of the extent of dispersion remains here as well the higher absolute unchanged.

In addition to the possible steric the great basicity of the OH-group. hindrance the increase of the By using large modifiers like

dispersion with alcohols based in

analytes differs from the previous measurements. The collision cross sections of these clusters seem to be especially influenced by the modifier instead of the analyte.

Doubly protonated [M+2H]²⁺

With growing carbon chain length, the fraction of doubly charged ions [M+2H]²⁺ increases, which are favorably stabilized by clustering with e.g. ACN (see supercharging) used as solvent. However, in this case ACN is present only below 2 · 10⁻⁷ %.

ACN as When using modifier all di-amines shows a clear cluster effect The CV trends are similar to the trends observed for singly protonated species. Note that the cluster effect increases with increasing length of the carbon chain.

Without modifier present the effect of an additional secondary amine group is barely noticeable In the presence of modifiers the qualitative trends are comparable to those observed with the di-amines. The absolute values, however, show pronounced differences as the result of distinctively different clustering properties, attributed to a largely different gas phase basicity as well as structural properties.

set-up

1: Physical & Theoretical Chemistry Wuppertal, Germany Institute for Pure and Applied Mass Spectrometry) 2: SCIEX

Concord, Ontario; Canada

Conclusions

qualitatively the Note identical CV behavior for all di-amines with the exception of 1,2-diaminoethane, which shows a turn to smaller CVs chain leads to a Type C at a SV of 3500 V, while all other curves turn upwards to This effect is explained by a higher CVs at this SV. This hard-sphere very interesting finding is currently under investigation.

Effect of the presence of a secondary amine group

- Both the modifier and analyte structural properties are of importance for the extent of the cluster effect on CV values. Self clustering (i.e. formation of multimers) in addition to clustering with modifiers needs to be taken into account
- The cluster effect on CV values becomes increasingly important with decreasing molecular size of the analyte, as the relative change in the collision cross section due to clustering/de-clustering increases.
- Larger molecular weight analytes tend to exhibit hard-sphere collision behavior.
- The size *ratio* between analyte and modifier determines, which of the two species has the larger impact on the extent of dispersion.
- For the investigated analytes the indirect consequences of any structural changes (e.g. basicity, relative collision cross section, ...) seem to be more important than changing steric properties alone.
- The general observations and results of the supercharging experiments are in very good agreement with the DMS experiments despite the largely different experimental set-ups used.

Outlook

- More experiments on structural dependencies are underway. For example chiral analytes may be dispersed in a DMS cell using chiral modifiers (enantiomeric separation).
- Further comparisons between DMS and supercharging experiments are currently carried out to arrive at a deeper understanding of the DMS gas phase cluster chemistry.

Literature

- Schneider, B. B.; Nazarov, E. G.; Loundry, F.; Vouros, P.; Covey, T. R Differential mobility spectrometry/ mass spectrometry history, theory, design optimization, simulations, and applications; Mass Spectrometry Reviews: 35: 687-737 (2015)
- Campbell, J. L.; Zhu, M.; Hopkins, W. S.; Ion-Molecule Clustering ir Differential Mobility Spectrometry: Lessons Learned from Tetraalkylammonium Cations and their Isomers; J. Am. Mass Spectrom.; 25; 1583-1591 (2014)
- Auerbach, D.; Aspenleiter, J.; Volmer, D.; Description of gas-phase ion/neutral interactions in differential ion mobility spectrometry: CV prediction using calibration runs ; J. Am. Mass Spectrom.; 25; 1610-1621
- Wissdorf, W.; Schneider, B. B.; Covey, T.; Hager, J.; Benter, T.; Is differential mobility chemically driven? Evidence and simulations for chemical effects as a primary separation factor in DMS; 64th ASMS Conference on Mass Spectrometry and Allied Topics; San Antonio; Texas; USA; (2016).
- Stappert, F.; Schneider, B. B.; Thinius, M.; Wissdorf, W.; Kersten, H Covev. T.: Hager, J.: Benter, T.; Effects of chemical dynamics and clustering reactions of chemical modifiers with analyte ions in differential mobility spectrometry (DMS); 65th ASMS Conference on Mass Spectrometry and Allied Topics; Indianpolis; Indiana; USA; (2017).

Acknowledgement

and technical support by SCIEX Financial (Concord, Canada) is gratefully acknowledged.