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Intfroduction

Simulation approach

lon separation in Differential Mobility Spectrometry (DMS) is driven by the dependency of the ion || DMS experiments:

mobility (K) on the electric field strength [1, 2]. Previous results show that the formation of ion- DMS/ MS system: SCIEX 6500 Triple Quad™ with SelexXtON® DMS
molecule clusters are one of the main causes for the occurrence of differential ion mobility in DMS '

Proton bound water cluster reaction system with temperature dependent rate  Applying an AC voltage (separation voltage, SV) with an asymmetric waveform causes An ion with a monotonously increasing a-function is defined
constant [3]: ions to drift on zig-zag trajectories towards one electrode of the DMS. The ion drift as Type A [8], with a monotonously decreasing a-function as

1, 3]. Another is the decrease of mobility of individual cluster species with increasing field strength lon source: SCIEX Turbo V™ (APCl-mode) o) 1+ 5 R . depends on the relative difference between the low- and high-field mobility. To balance ~ Type C [8]. lons with an increasing and then decreasing a-

due to the interaction of ions and background gas (“Hard-Shell effect“). Recent simulations of a DMS Data Processing: SCIEX Analyst® 1.6.2 [H+ (H,0),]" + H,0 + N, = [H + (H,0),,, "+ N, the ion drift, a DC voltage (compensation voltage, CV) is applied, which allows selected function are defined as Type B [8].

stage excluding hard shell effects were in good qualitative agreement with experimental data but | | Chemical Kinetics Simulation: The effective ion temperature in an electric field E is given by [2]: ions to pass through the DMS stage. The simulation iteratively calculates a CV value so on t ¢ simulati ‘ 4 with dedicated

also showed systematic differences from experiments [3]. We present a refined version of the || ¢ i ed version of “RS“ M Carlo kineti de 4 B that the net motion of the reacting ion ensemble towards one DMS electrode vanishes. On trahsport simulations were pertormed with dedicate
- o : - " Fo i ustomized version o onte Carlo kinetics code [4] M(KE)? M: collision gas mass custom simulation programs, using established base ion

numerical model, considering the field dependence of the ion mobility of the individual cluster ilibri tate simulations: Cantera 2.1.1 [5] T.=T+ K ion mobility _ _ _ _ o o ’ g

species. Experimental and numerical results for the proton bound water cluster system including cQUIIDTILM State simulations: Lantera 2. 2. eff 3 kg ky: Boltzman constant The dependence of the CV on the SV yields information about the a-function, which is mobilities [3] and a hard sphere collision model [9].

variable background gas temperature are presented and discussed. Furthermore, the direct compa- IMS experiments: defined as [2]:

rison between ion transport simulations in a High Kinetic Energy ion mobility spectrometer (HiKE- High kinetic Energy IMS (HiKE), Field strength: 12 — 107 Td, 20 mbar
IMS) with experimental data allows to verify and parameterize the simulation approach.

Reduced ion mobility (temperature and pressure normalization) [2]:

Ki=K p To Ty: normal temperature (273.15 K) (X(E) — K(E)—K(O) K(E): high field'ion mol?i!ity
background pressure [6, 7] 0= BT po: normal pressure (101325 Pa) N K(0) K(0): low field ion mobility

Differential Mobility Simulation: Effect of individual cluster species DMS Simulations: Background Gas Temperature

Conclusions & Outlook
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InCreasing water mixing ratios. compensation voltage [V] cluster 1 occurs in a range of 81 Td to 100 Td. drift time depends on the CSS. Decreasing the CSS yields smaller drift times.




