

Quasi-harmonic approximation for the thermochemical stability of small proton bound clusters – a theoretical study

Introduction

Small proton bound clusters are often observed in atmospheric pressure ionization (API) mass spectrometry. Especially clusters formed from water or other solvents, e.g., from a liquid sample injection, dominate the chemical environment of an API ion source and determine the degree of analyte protonation through the thermodynamic equilibrium of the system.^[1]

For analytical purposes, it would be of great benefit, if the system at hand, i.e., the dominant cluster species and the analyte, and its thermodynamic equilibrium would be studied in greater detail, e.g. via theoretical methods, to prevent making poor choices regarding solvents / gas phase additives leading to reduced sensitivity.

So far, computational methods describing the thermochemical stability of such clusters and their capabilities have been protonation quite unsatisfactory. Standard harmonic oscillator approximations suffer from the strong anharmonicity of the loosely bound structures and more advanced methods (VPT2, VSCF) are often too demanding.

this contribution we investigate the thermochemistry of proton bound clusters with the quasi-harmonic approximation (QHA), which can account for anharmonicity effects while still being computationally affordable.

As a case study we analyze two proton bound clusters, i.e., an acetonitrile dimer $(ACN)_2H^+$ and a mixed amine methanol cluster $[CH_3NH_3 + CH_3OH]^+$:

In both cases, a standard geometry optimization and frequency calculation of the cluster and its fragments led to unsatisfactory cluster stability data when compared to experimental data. This is mostly due to the harsh approximation of a harmonic potential to the proton movement potential and treating the internal rotations as vibrations. Additionally, coupling between modes is neglected in the harmonic treatment but is expected to have a significant contribution to the given examples.

Computational Details

Software package:

Gaussian16, Revision A.03^[2] for DFT calculations **GaussView 6.0.16^[3]** for visualization **Python** scripts for analysis and plotting

Machine:

Linux-based computer cluster, 4×16-Core CPUs (6282SE AMD Opteron; Advanced Micro Devices GmbH, Dornach, Germany) and 32×16 GB memory

QHA

- For thermochemical stability ($\Delta_R G$ values) the partition function Z of reactants and products is needed
- Vibrational part of Z is difficult to describe outside the harmonic approximation to the potential energy surface (PES)
- The Quasi-harmonic approximation introduced by Karplus and Kushick^[4] estimates *classical* Z_{vib} from configurational distribution determined by MD simulations:

- The integral over the configurational distribution (called the configuration integral) is proportional to the partition function
- If configurational distribution is fitted to a Gaussian:

$$Z_{vib} = \left(\frac{\sqrt{2\pi k_B T}}{h}\right)^{3N-6} \sqrt{\det\left(\boldsymbol{G}^{-1}\big|_{\boldsymbol{q}_0}\right)} \sqrt{(2\pi)^{3N-6} \det(\boldsymbol{\sigma})}$$

- With $G^{-1}|_{a_0}$ being the transformation matrix between Cartesian x and internal coordinates q at the equilibrium geometry q_0 and σ being the covariance matrix of the Gaussian distribution
- Workflow:
 - conduct MD simulation around q_0 at a certain temperature
 - Transform trajectory into internal coordinates q
 - Determine covariance matrix σ

$(ACN)_2H^+$

- Z_{vih} differs largely from the har this is due to failed descrip frequency modes $(h\nu \gg k_B T)$ wh frozen out; in our treatment, classically and even those mo energy. At very high T the part actually converge
- The correction factor is very difference the cluster and the fragments, the loosely bound cluster is m describe by this method; also importance of this correction
- The internal rotation is assumed rotation and its partition function
- The QHA $\Delta_R G$ value is much experimental one of -92.2 kJ/m one calculated with standa approximation (-108.6 kJ/mol)

Alexander Haack¹; Walter Wissdorf¹; Hendrik Kersten¹; Thorsten Benter¹

Implementation and special Considerations

MD Simulation

- Geometry optimization and normal mode analysis (both at B3LYP-GD3BJ/def2-TZVPP) for every compound
- Multiple ab initio MD simulations (B3LYP-GD3BJ/def2-SVP) around the respective equilibrium geometry $oldsymbol{q_0}$, applying $(3N-6)k_BT$ kinetic energy to the nuclei
- export 3N Cartesian coordinates and corresponding energies

Internal Coordinates

- In principle, all kinds of internal coordinates could be used
- We chose *normal* coordinates $oldsymbol{Q}$ because of their generality, the transformation matrix is obtainable from normal mode analysis, G-matrix is equal to unity matrix

Eckart-Sayvetz conditions

- Before transformation from Cartesian to normal coordinates is performed, the trajectory is manipulated^[5]
- Separate out overall translation (1) and rotation (2) by putting the molecule into the Eckart-frame at each time step

- Separate out internal rotations by rotating the moving atoms back around the internal rotation axis

		ACN	(ACN)H ⁺	$(ACN)_2H^+$		CH ₃ OH	CH ₃ NH ₃ +	[CH ₃ NH ₃ +CH ₃ OH] ⁺
onic values; on of high h should be verything is have k_BT on functions	ε_0 / E_h	-132.816103564	-133.127065632	-265.996251514	ε_0 / E_h	-115.781709438	-96.2659366250	-212.082861611
	$\det(\sigma) / (\operatorname{amu} \text{\AA}^2)^M$	1.1723×10^{-32}	1.2505×10^{-38}	1.4578×10^{-68}	$\det(\boldsymbol{\sigma}) / \left(\operatorname{amu} \mathbb{A}^2 \right)^M$	3.8346×10^{-32}	1.5646×10^{-50}	5.9329×10^{-77}
	fcorr	0.317831	0.600657	0.003921	fcorr	0.331338	0.396865	0.000512
	$\ln(Z_{wib}^{QHA,corr})$	-27.042012	-30.567615	-54.663061	$\ln(Z_{vib}^{QHA,corr})$	-26.417544	-41.983030	-64.577338
	$\ln(Z_{vib}^{HA})$	-47.534292	-58.670193	-98.827696	$\ln(Z_{vib}^{HA})$	-53.822945	-83.555063	-136.467535
	$\ln(Z_{IR})$	-	-	0.963855	$\ln(Z_{IR})$	-	-	$\begin{cases} 3.117 \\ 1.240 \end{cases}$
ent between licating that difficult to dicates the	ln(Z _{rot})	7.809736	7.887583	9.947041	$\ln(Z_{rot})$	8.053511	7.356496	11.499821
	ln(Z _{trans})	16.150450	16.186853	17.208483	ln(Z _{trans})	15.778953	15.780068	16.819231
	G _{corr} / E _h	0.002910	0.006131	0.025063	G _{corr} / E _h	0.002441	0.017795	0.030121
	$\Delta_R G / kJ/mol$			-97.30	$\Delta_R G / kJ/mol$			-66.50
a free ated to the an the rmonic	-265.99625142 -265.99625144 -265.99625146 -265.99625148 -265.99625148	2.6 μeV	× PES Scan sine fit			H C H		H H H H H

Transformation and partition functions

– After Eckart treatment, transform (modified) Cartesian coord. to (mass weighted) normal coord.

$$Q_i(t) = \sum_{k=1}^{3N} \frac{\partial Q_i}{\partial x_k} \sqrt{m_k} \left(x_k(t) - x_k(0) \right)$$

- Determine covariance σ matrix (dimensionality of $3N 6 N_{ir}$)
- Partition functions for internal rotation (moment of inertia around int. rot. axis needed) and overall translation and rotation are calculated using standard formula
- **right**: trajectory of ACN depicted as correlation matrix of the Q_i

Correction

- From the ab initio and QHA potentials (V and V_{OHA}) a correction can be calculated:
- $-\langle \cdots \rangle$ is the average over the MD trajectory

Diagnostics

- Along most modes, the configurational distribution is well described by a Gaussian (top figures)
- Sometimes the distribution is asymmetric (due to an anharmonic potential); the Gaussian is thus broadened
- Sampling density must be high enough to ensure a converged distribution
- The kinetic energy in every mode changes over the MD trajectory; higher energies are less likely (bottom figures)
- This models the energy distribution of a canonical ensemble; corresponding Boltzmann plots show a nearlinear correlation
- Mean kinetic energy in each mode is around $\frac{1}{2}k_BT$

Results

0.0000

- $Z_{vib}^{QHA,corr} = Z_{vib}^{QHA} /$

¹Physical & Theoretical Chemistry Wuppertal, Germany (Institute for Pure and Applied Mass Spectrometry)

$$\exp\left(\left(V-V_{QHA}\right)/k_BT\right)$$

$CH_3NH_3 + CH_3OH]^+$

- h differs largely from harmonic values
- the cluster is even smaller than in the
- rnal rotations (see pictures) were and separated out individually. Their functions are calculated assuming barriers
- $\Delta_R G$ value compares not so well to the ntal one of -49.31 kJ/mol^[6b] and worse than the one calculated with harmonic approximation (-59.3 Ithough the latter is also unsatisfactory
- cule is very floppy which might hinder scription of the configurational on by normal coordinates; it is possible rnal ones (BAT coordinates) would

Conclusions

Method:

- The QHA was applied to small molecular clusters for the determination of absolute classical vibrational partition functions and thermochemical data, such as free reaction enthalpies from MD simulations.
- Normal coordinates, obtained from from standard ab initio NMA, were used for the description of the configurational distribution.
- It was important to separate out large amplitude motions such as overall translation, overall rotation and internal rotation by putting the molecule into the Eckart frame and separating out internal rotation by enforcing the Eckart-Sayvetz conditions at each time step of the MD trajectory.
- The covariance matrix of the normal coordinates, determined from the MD simulation, was tested for convergence, deviations from the multidimensional Gaussian and mean temperature in each mode.
- Although sometimes difficult, this analysis gave us confidence of the applicability of our treatment to small molecular clusters.

<u>Case study:</u>

- Two clusters studied: $(ACN)_2H^+$, $[CH_3NH_3+CH_3OH]^+$
- While the one performed better, the second performed worse than the standard harmonic approximation
- While computationally more expensive than standard treatment, our method is faster than advanced techniques (VPT2, VSCF)

Outlook

- Compare to results when internal (BAT) coordinates are used
- Study more molecular systems to test performance Study performance at different temperatures
- While the analysis is mostly automated, identification of the internal rotation still needs to be implemented in an automatic fashion

Literature

[1] Klee et al. (2014): J. Am. Soc. Mass Spectrom., 25(8), 1310-

[2] Frisch et al. (2016): Gaussian16, Revision A.03, Gaussian, Inc., Wallingford CT.

[3] Dennington II, Keith, Millam (2016): GaussView 6.0.16, Semichem, Inc.

[4] (a) Karplus, Kushick (1981): *Macromolecules*, 14(2), 325-332 (b) Levy et al. (1984): Macromolecules, 17(7), 1370-1374 (c) Rojas et al. (1986): J. Chem Phys., 85(2), 1037-1043.

[5] (a) Eckart (1935): *Physical Review*, 47(7), 552–558. (b) Sayvetz (1939): J. Chem. Phys., 7(6), 383-389.

[6] (a) Meot-Ner (Mautner), M. (2005): Chem. Reviews, 105(1), 213–284. (b) Meot-Ner (Mautner), M. (1984): JACS, 106(5), 1257-1264.

Acknowledgement

Financial support by **iGenTraX UG (Haan, Germany)** is gratefully acknowledged.