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lons are separated in Differential lon Mobility Spectrometry (DMS) by the field| | Numerical simulations: Proton bound water cluster system to the center axis of the detector, a DC voltage (compensation Huttree method is used to calculate particle particle interactions. ® Measurements of the proton-bound water cluster system at
dependency of their mobility in an alternating electric field [1, 2]. The ion mobility lon transport simulations: [H + (H,0) ]* + H,0 + N, 2 [H + (H,0) ., [ + N, voltage, CV) is applied. The a-function describes the dependency of different water mixing ratios.
in chemical reactive systems, e.g., proton-bound water clusters, is determined Verlet lon Trajectory Integrator (C++), Gas Collision Model (Statistical Diffusion Simulation) and Space The temperature dependence of the equilibrium constants and thus ’]Eih(IedCﬁ gn thedS.V. W|th1tge lon mobility at high field (K(E)) and low ddit £ diff di del
. . . . . . P . : article, field an o
primarily by the formation and destruction of ion-bound clusters. Previous| | .. modef(Barnis-Hugt Tree) P the temperature dependence of the rate constants are approxi- eld (K(0)) conditions [1, 2] nout e e Addition of different temperature gradient models, e.g., an
simulations showed a deviation of the temperature dependence between B ——— mated using the van't Hoff equation [3]. a (E) = [K(E) - K(0)] / K(E) l conf.gat.on s e e exponential model.
simulated and experimental dispersion plots [3]. Temperature measurements _ _ ' o Differential Mobility At high field conditions, the ion temperature is high, which results in //' o Additi f 3 East Multivole Method (EMM g
e : : Customized version of "RS" Monte Carlo kinetics code [4] small clusters and therefore a high ion mobility and vice versa at low  inetic simuation e ion of a Fast Multipole Method { ) to decrease
within a commercial DMS cell reveal that a temperature gradient along the DMS The differential ion mobility is the difference between the ion . ° " .. " o o ration RS Monte Carlo tesation (Cos) computational time
cell is present. Therefore, a non-isothermal and an advanced transport model | | DMS expenmenfs: mobility at high field and low field conditions [1, 2]. An applied AC Kineti dT. ¢t Simulati l l V\\‘ m———
: : L - - " oo i i : inetic and Transport Simulations L
were implemented in the existing simulation framework. Additionally, diffusive | | ppms 7 Ms system:  Sciex 6500 Triple Quad™ with Selexlon® DMS voltage (separation voltage, SV) with an asymmetric waveform P Smuaton 051 ® Fully parallelization of the framework.
and ‘ i i ' : ' ' causes ions to drift in a zig-zag shape towards the electrodes. The lon transport simulations were performed with the IDSim framework . Knexc Analysi Hrelecton/Analysts Sk
particle-particle interactions are considered. Furthermore, the ion trans- | , Sciex Turbo V™ (APCl-mode) , , _ , , . _ o= _ _ Data Processing Python Python
. t various conditions. e.o. isothermal and non-isothermal conditions and on source: CleX 1urbo -mode ion trajectories are dependent on the differential mobility. Usually, using a Verlet Integrator, which is implemented in C++ with a  (numpy / Matplotlib) (numpy/ Matplotlib)
?;Slonta p ocit ’ﬁl -8 ted Data Processing: Sciex Analyst® 1.6.2 this results in a net drift towards one electrode. To redirect the ions  Statistical Diffusion Simulation (SDS) Gas Collision model. A Barnes-
ifferent gas flow velocity profiles, are presented.

lon Transmission Dispersion Plots Conclusions
e The water cluster system is affected by the SV and
Cluster distribution at alfernahng field sl'rengfh Previous simulations [3] of a DMS stage were in good qualitative agreement with The simulation approaches the experimental result with decreasing water mixing therefore is not in equilibrium.
_ . _ o _ experimental results but showed systematic differences regarding the temperature ratio, but the shape of the dispersion plot differs (e.g. at 0.07 % H,O in the figure on
The alternating field strength has a strong impact on the equilibrium of the proton-bound water Right: ss00. — @ dependence of the SV/CV plots. In contrast to the experimental results, the the lower left). The experimental results cannot be fully described, even with the
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Temperature measurements within the DMS cell showed that a temperature

gradient is present as shown in the figure on the right (upper panel). Thus, a linear _ - _ _ o _ . . S
temperature gradient is added to the simulation. This has a strong impact on the  bottom electrode Previous diffusion and space charge simulations show that the main ion loss is caused Due to the long computational time, the space charge factor (which is simply a
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same (upper panel). same result is shown at different gas flow velocities (right panel).




