Simulation of Cluster Dynamics in High Kinetic Energy IMS (HIKE-IMS)
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Simulation approach

The reduced field strength and therefore the effective ion temperature impact significantly on | | Numerical Simulations: Protonbound watercluster system Kinetic and Transport Simulations reaction region. Subsequent transport simulations were performed ® Simulation of additional cluster systems, such as the acetonitrile/
the dynamics of clustering reactions in lon Mobility Spectrometry (IMS) [1]. Increased lon Transport Simulations: [H+ (H,0),]* + H,0 + N, 2 [H + (H,0)., ]* + N, lon transport simulations were performed with the IDsim With the results of the equilibrium simulation. water cluster system, which is already measured with the HiKE-IMS.
reduced field strengths enhance the destruction rates of ion-molecule clusters. Using a High Verlet lon Trai | Cot) Gas Collision Model (Hard-Soh i ) tol (B Framework using a Verlet Integrator, which is implemented in C++ . .
Kinetic Energy lon Mobility Spectrometer (HiKE-IMS) allows a deeper insight into the chemical Hii?r:ez;] rajectory Integrator (C++), Gas Collision Model (Hard-Sphere) and Space charge model (Barnes- The temperature dependence of the equilibrium constants and thus of with a Hard Sphere Gas Collision model. To calculate space charge " et confution BT ® Improvement of the assumed collision cross sections of acetone
kinetics at elevated ion temperature. The reduced field strength in this drift tube instrument o , the rate constants are approximated using the van't Hoff equation [5]. interactions, a Barnes-Hut method was implemented in the (Chemcaleactions configuration o and acetone water clusters.
may exceed 120 Td. Numerical simulations of proton-bound water clusters under various Chemical Kinetic Simulations: lon Mobili simulation code. l l /7 S . . . . .

s - - Customized version of "RS" Monte Carlo kinetics code [2] on Mobility The HiKE-IMS [3, 4] consists of a reaction and a drift tube, whichare . _ . /4 ® Consideration of space charge effects with multiple species and
conditions were performed. These results were directly compared to experimental results. lon mobility K is the broportionality factor of the drift velocity v. and ’ , Kinetic Simulation < ronte Carle Verlet lon Tralectory o ,

- : - : oo y prop y Y Vq separated by an ion shutter. The applied reduced field strength in tonTraiectory integration Integration (C:++) chemical interactions.

Furthermore, simulations were performed to investigate the effects of diffusion and space the electric field strength E [6]: the reaction region is 12 Td with a residence time of abbroximatl .
charge in the drift tube of the HiKE-IMS. Additionally, the proton-bound watercluster/| | IMS Expenmenfs: v, = KE 10 ms. The reguced field strength in the drift region pv|\:/)as Varieg l l ~N ® Addition of a Fast Multipole Methode (FMM) to decrease the
acet(;ne syste]:n r\:vas IexperlmentaIlyrllnvestl"llgated alnd corcrlwpared W|t|: nlt:merlczl results. Kinetic High Kinetic Energy lon Mobility Spectrometer (HiKE-IMS) [3, 4]: At low field conditions the ion mobility can be considered as between 35 and 120 Td; the drift times are between 0.4 Ms and  puasrocesig - - computational time when calculating space charge effects.
simulations of this cluster system show that at elevated acetone background concentrations : - : ity - - ift ti inetic si i N : :

. . ySEEM ShOW . iy . Srot E-aﬁlégsrfundtﬁressure' %8 %gSmT%ar constant. However, the ion mobility is a function of the reduced field 1.6 ms. To calculate the RIP drift time, kinetic simulations were ® Fully parallelization for improved computational performance.
the mixing ratio of the acetone dimer is increasing with increasing reduced field strength. I€la Strengtn. strength at high field conditions. performed in order to determine the cluster equilibrium state in the

Proton bound Water Cluster System Diffusion and Space Charge Effects

Conclusions

e The drift time simulation of the water cluster system
The W.atercc'jusoter ?’Ste”) was experr:me“ta”y anld numerically 8000 . s Left: is in a very good agreement with experimental results
Investigated In the H|KE-IM_S. The mean cluster s.lze IS 000 - Cl2 Water cluster distribution at 49 °C and a dew point In order to consider only diffusion and space charge interaction, 1950 ps t i dit
dependent on the reduced field strength, as shown in the cl_3 . . : - - ; . 1850 pis at various conditons.
e e richt C v el ’ o €000 - —o- Cl4 of -35.6 °C (220 ppmV H,0). The mean cluster size the simulations were performed without chemical reactions. 1750 pis _ _ _ _ o
tg)ure Odn the ”i L donsquzelr:jt Y, € usther. transmgn-s af:e B oo - a5 decreases with increasing field strength as smaller and only one simulated species. The results show a strong 2000 - Ten b * With increasing field strength cluster transition
ODserved wnen the re uced ne strength s ramped in t, € E cluster species become more abundant. Cluster 3 is dependence of the peak width (indicated here by the standard =1 1450 ps occurs
drift .reglonl. dThe nudmfferlcal reSLél.t§ areThverlfledI Yv'th 54000' dominating at 60 Td. With increasing field strength deviation of the axial positions of the simulated particles) on the o " '
expgrlmenta atj at difrerent .ccr)]n hll‘lons. ne Slmlu atlc?ns 5 3000 cluster 3 dissociates and a cluster transition occurs. residence time and thus the reduced field strength. So, the g o =1 1150 ps e Residence time in the drift tube and chemical
are in a very good agreement with the experimental results. 2000- The maximum concentration of Cluster 2 is at 85 Td. peaks are sharper at high field strengths, which is already 5 =Rl reactions are the main contributors to peak width
Tlhus, the 5|mulat|onhframer:/vork can be used t(l) model other 1000 At very high reduced field strengths cluster 1 is observed in the RIP-drift time simulations and experiments. 2 1000 = ssops o P '
) ) .. . . . = 750 S . .
%l:ster SIYcSte?qtsﬁ SUCt as It i’ acetfc)ne/water: c USLerl system. N S dominant. Note that all abundance maxima are well However, cluster transitions superimpose the effects of diffusion g = 0. B, * The lower the background water mixing ratio, the
€ results ot the water cluster system are shown below. s s o s o separated from each other. and are the main cause for broadened peak widths in chemical B 50w | 2 wider the peak widths of ions clustered with water.
reduced field strength {Td) reactive systems. Further simulations show that with increasing 500 3 350ps S |
mass the peak width becomes slightly narrower, but compared l l 1 l l k l 1 1 D=0 § s g e The acetone dimer is formed with increasing field
to the other effects this is not significant. oL 1L 5 -— = ; S0 1000 1500 2000 when acetone is present at mixing ratios in the ppmV
Water cluster RIP - Experimental and numerical resulfs x position (mm) wrme ) range.
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